Индукционный бесконтактный датчик своими руками

Содержание
  1. Digitrode
  2. цифровая электроника вычислительная техника встраиваемые системы
  3. Индуктивный датчик приближения на основе TCA505 своими руками
  4. УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК
  5. Схема принципиальная датчика
  6. Изготовление индуктивного датчика
  7. Качественный щуп для осциллографа своими руками
  8. цифровая электроника вычислительная техника встраиваемые системы
  9. Индуктивный датчик приближения на основе TCA505 своими руками
  10. Изготовление тонких щупов
  11. УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК
  12. Схема принципиальная датчика
  13. Изготовление индуктивного датчика
  14. Как изготовить самодельные щупы?
  15. Стандартные самодельные щупы
  16. Тонкие самодельные щупы для прокалывания изоляции
  17. Назначение
  18. Щупы для SMD-монтажа
  19. Устройство
  20. САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА
  21. Принцип работы
  22. Расстояние срабатывания и объект воздействия
  23. Наконечники-«крокодилы»
  24. Преимущества и недостатки
  25. Процесс изготовления щупов

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Индуктивный датчик приближения на основе TCA505 своими руками

Датчик приближения – это датчик, способный обнаруживать наличие близлежащих объектов без какого-либо физического контакта. Датчик приближения часто излучает электромагнитное поле или пучок электромагнитного излучения и ищет изменения в поле или обратном сигнале.

Опубликованная здесь схема представляет собой индуктивный датчик приближения, который используется для бесконтактного обнаружения металлических объектов. Схема может быть использована для обнаружения металлических предметов или в качестве датчика положения (датчика расстояния).

В данном случае микросхема TCA505 используется для в качестве основы индуктивного бесконтактного переключателя, который может обнаруживать металлические объекты в диапазоне 5-10 мм. Резонансный контур генератора LC реализован с использованием открытого феррита и параллельно подключенного конденсатора (вывод LC). Если металлический объект перемещается ближе к открытой стороне феррита, энергия берется из резонансного контура, и амплитуда колебаний соответственно уменьшается. Это изменение амплитуды передается на пороговое переключение с помощью демодулятора и активирует выходы.

Схема была проверена с напряжением 12 В постоянного тока, однако она также может работать с более высоким напряжением питания, до 42 В с небольшим изменением значений компонентов. Обычно светодиод D2 горит, когда катушка обнаруживает металлический объект. Светодиод D2 гаснет, а светодиод D1 включается, поэтому обычно Out-2 обеспечивает низкую выходную мощность, а Out-1 обеспечивает высокую выходную мощность при обнаружении металлического объекта. Выходной сигнал Q3 переходит в логическую «1», а Q1 в логический «0», оба выхода с открытым коллектором. Потенциометр PR1 помогает отрегулировать расстояние чувствительности датчика. Выход каждого транзистора может напрямую управлять малым реле, так как каждый выход обеспечивает 50 мА тока. Сенсорная катушка может быть изготовлена с использованием металлического сердечника 14 мм, индуктивность должна быть от 540 мкГн до 640 мкГн. Схема подключения выглядит следующим образом.

Расположение компонентов на плате следующее:

Источник

УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК

Приветствую уважаемых радиолюбителей. Предлагаемый вашему рассмотрению индукционный датчик может использоваться во многих устройствах – сигнализациях отрывания дверей или снятия с полок товаров, в тахометрах, в искробезопасных указателях уровня жидкостей, вместо прерывателей в бензиновых двигателях, в элементах автоматики, к примеру в отключении клапана набора воды в ёмкостях. Схема взята из классических её прототипов, но упрощена и сбалансирована. Она достаточно проста, но, при этом и надёжна, и отличается чёткостью своей работы, легко изготавливается, налаживается и встраивается в различные устройства.

Схема принципиальная датчика

Для более чёткого рассмотрения картинки — сохраните её на ПК и увеличьте.

Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.

Важно! Ёмкость С3 должна быть импульсной, хорошего качества и номиналом как указано в схеме.

Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.

Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу.

Изготовление индуктивного датчика

Файл и чертёж проекта можно скачать по ссылке. Катушки L1 и L2 без сердечников. L2 содержит 30 витков провода ПЭВ-1 (0.1-0.12 мм). L1 20-30 витков провода ПЭВ-1 (0.1-0.12 мм.) в зависимости от щели-расстояния в датчике (подбирается опытным путём, но при щели около 2 мм. 23-26 витков). Мотаются катушки на оправке (маленькое 1-1.5 мм. сверло, или иголка, кусок проволоки) между двумя картонными щёчками, после закрепляются клеем и снимаются с оправки, щёчки отбрасываются тоже. Толщина катушек два — три диаметра провода, мотаются в навал. Обе готовые катушки надеваются на пластиковый стержень, который после можно вынуть, между катушек ставится полиэтиленовая или фторопластовая прокладка подходящей толщины (полиэтилен и фторопласт отстаёт от застывшей эпоксидной смолы).

Из прессшпана вырезается крестовидная развёртка коробочки, в её дне прокалывается четыре отверстия, в которые продевают гибкие многожильные провода для выводов катушек, к ним подпаивают концы катушек, развёртку сгибают для получения коробочки, обматывают скотчем или изолентой, продевают насквозь ещё один пластиковый штырь (пластик после извлекается и получается отверстие для крепления), центрируется и крепится также штырь с катушками и, наконец, заливают эпоксидкой. Гибкими выводами катушки подпаиваются каждая на своё место, фазируются для получения генерации, датчик крепится на своё место, рядом с ним плата генератора.

В нынешнее время такие катушки или подобные им можно найти во многих уже не нужных, сломанных или устаревших устройствах, к примеру в флоппи-приводах. Есть и готовые и катушки и датчики, но не всегда их можно приобрести, и не всегда это дёшево. Ну и сделать своими руками тоже для кого-то удовольствие, особенно если будет работать не хуже, а где-то и лучше готовых изделий.

Читайте также:  Заколки для волос своими руками с детьми

Фотографий готового устройства нет, так как мопед продал, а прибор был в нём. Так же как и плата самого зажигания, к которому и подсоединён этот датчик. Теперь возможно только побробнейшее описание и ответы на вопросы интересующихся на форуме. Но зажигание вместе с этим датчиком действительно было на порядок лучше промышленного. Искрами в лабораторном испытании даже киповскую бумагу поджигало. Ребята шутили — зачем тебе теперь бензин? На макулатуре будешь ездить. В общем схема отличная, рекомендую! Автор статьи — ПНП.

Источник

Качественный щуп для осциллографа своими руками

цифровая электроника вычислительная техника встраиваемые системы

Индуктивный датчик приближения на основе TCA505 своими руками

Датчик приближения – это датчик, способный обнаруживать наличие близлежащих объектов без какого-либо физического контакта. Датчик приближения часто излучает электромагнитное поле или пучок электромагнитного излучения и ищет изменения в поле или обратном сигнале.

Опубликованная здесь схема представляет собой индуктивный датчик приближения, который используется для бесконтактного обнаружения металлических объектов. Схема может быть использована для обнаружения металлических предметов или в качестве датчика положения (датчика расстояния).

В данном случае микросхема TCA505 используется для в качестве основы индуктивного бесконтактного переключателя, который может обнаруживать металлические объекты в диапазоне 5-10 мм. Резонансный контур генератора LC реализован с использованием открытого феррита и параллельно подключенного конденсатора (вывод LC). Если металлический объект перемещается ближе к открытой стороне феррита, энергия берется из резонансного контура, и амплитуда колебаний соответственно уменьшается. Это изменение амплитуды передается на пороговое переключение с помощью демодулятора и активирует выходы.

Схема была проверена с напряжением 12 В постоянного тока, однако она также может работать с более высоким напряжением питания, до 42 В с небольшим изменением значений компонентов. Обычно светодиод D2 горит, когда катушка обнаруживает металлический объект. Светодиод D2 гаснет, а светодиод D1 включается, поэтому обычно Out-2 обеспечивает низкую выходную мощность, а Out-1 обеспечивает высокую выходную мощность при обнаружении металлического объекта. Выходной сигнал Q3 переходит в логическую «1», а Q1 в логический «0», оба выхода с открытым коллектором. Потенциометр PR1 помогает отрегулировать расстояние чувствительности датчика. Выход каждого транзистора может напрямую управлять малым реле, так как каждый выход обеспечивает 50 мА тока. Сенсорная катушка может быть изготовлена с использованием металлического сердечника 14 мм, индуктивность должна быть от 540 мкГн до 640 мкГн. Схема подключения выглядит следующим образом.

Расположение компонентов на плате следующее:

Изготовление тонких щупов

Также можно сделать тонкие щупы для мультиметра. Наиболее дешевый и простой вариант – это сделать их из корпуса ручек. Тут все очень схоже, только вместо зажимов понадобятся следующие детали:

В качестве наконечника покупают либо специальные тонкие щупы для мультиметра dt, либо используют тонкие швейные или медицинские иглы. Лучше все-таки использовать специальные иглы-щупы, приобретя их на радиорынке или в интернет-магазине.

Остальное всё понадобится то же, что и в предыдущем варианте изготовления щупов для мультимтера. Штекеры подсоединяются так же, как было описано выше, а закрепление наконечников будущих щупов имеет несколько особенностей.

Для начала в верхних колпачках ручек делается по одной дырке. Это нужно для захода провода внутрь. Желательно чтобы их диаметр совпадал с диаметром провода. Далее нижнюю часть ручки разбирают и в неё вдевают иглу.

Иглу нужно спаять с проводом, который предварительно вдет в колпачок. Припой не стоит делать слишком толстым, но запаивать нужно надёжно. О процессе пайки также было рассказано выше.

Когда всё готово, в нижнюю часть ручки заливается силикон и пока он не затвердел, игла высовывается по уровню. В течение нескольких часов ее нельзя тревожить.

Можно это сделать таким образом. Сначала высунуть иглы на 4-5 см, после чего одеть колпачок. Таким образом, наконечники для щупов самостоятельно займут нужное положение. Когда силикон застыл, конструкция получается крепкая и удобная.

УНИВЕРСАЛЬНЫЙ ИНДУКЦИОННЫЙ ДАТЧИК

Приветствую уважаемых радиолюбителей. Предлагаемый вашему рассмотрению индукционный датчик может использоваться во многих устройствах – сигнализациях отрывания дверей или снятия с полок товаров, в тахометрах, в искробезопасных указателях уровня жидкостей, вместо прерывателей в бензиновых двигателях, в элементах автоматики, к примеру в отключении клапана набора воды в ёмкостях. Схема взята из классических её прототипов, но упрощена и сбалансирована. Она достаточно проста, но, при этом и надёжна, и отличается чёткостью своей работы, легко изготавливается, налаживается и встраивается в различные устройства.

Схема принципиальная датчика

Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.

Важно! Ёмкость С3 должна быть импульсной, хорошего качества и номиналом как указано в схеме.

Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.

Читайте также:  Велосипед с коляской взрослый своими руками

Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу.

Изготовление индуктивного датчика

Из прессшпана вырезается крестовидная развёртка коробочки, в её дне прокалывается четыре отверстия, в которые продевают гибкие многожильные провода для выводов катушек, к ним подпаивают концы катушек, развёртку сгибают для получения коробочки, обматывают скотчем или изолентой, продевают насквозь ещё один пластиковый штырь (пластик после извлекается и получается отверстие для крепления), центрируется и крепится также штырь с катушками и, наконец, заливают эпоксидкой. Гибкими выводами катушки подпаиваются каждая на своё место, фазируются для получения генерации, датчик крепится на своё место, рядом с ним плата генератора.

В нынешнее время такие катушки или подобные им можно найти во многих уже не нужных, сломанных или устаревших устройствах, к примеру в флоппи-приводах. Есть и готовые и катушки и датчики, но не всегда их можно приобрести, и не всегда это дёшево. Ну и сделать своими руками тоже для кого-то удовольствие, особенно если будет работать не хуже, а где-то и лучше готовых изделий.

Как изготовить самодельные щупы?

Как мы говорили выше, многие предпочитают при поломке заводских щупов не покупать новые, а сделать их самостоятельно. Рассмотрим два популярных варианта изготовления самоделок.

Стандартные самодельные щупы

Для их изготовления понадобятся разборные авторучки (без стержней) и наконечники от дротиков для дартса.

Порядок работы таков:

Для дополнительной фиксации наконечник дротика можно приклеить.

Наглядно все устройство на видео:

Тонкие самодельные щупы для прокалывания изоляции

Теперь разберемся, как можно сделать тонкие щупы для мультиметра своими руками. Для этого нам понадобятся цанговые карандаши, использующие сменные грифели, и швейные иглы, подходящие по толщине.

Изготовление тонких щупов производится следующим образом:

На полученные изделия желательно натянуть цветную термоусадку. При работе с феном нужно быть осторожным, так как поток горячего воздуха может вызвать деформацию пластика.

В качестве защитных элементов можно использовать колпачки от ручек и карандашей.

На видео пример изготовления игольчатых щупов для проверки мелких деталей:

Назначение

Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.

Сфера применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.

Щупы для SMD-монтажа

Во время работы с SMD-элементами периодически требуется проводить измерения, справиться с которыми можно только при помощи подключенных к тестеру тонких щупов. Эти изделия оснащаются острыми латунными или нержавеющими стальными наконечниками в форме иглы. Они в обязательном порядке защищены колпачками, которые сводят к минимуму опасность перелома электрода или случайных ранений мастера.

Для специалистов по SMD-монтажу такие элементы наиболее удобны в работе. Острыми щупами можно не только прокалывать изоляцию провода, но и соскабливать с нужного участка поверхности платы паяльную маску с дальнейшим проведением измерительных работ. Хотя толщина этой иглы совсем невелика, элемент легко выдерживает напряжение 600 В в течение длительного времени.

Для измерительных работ при монтаже SMD-компонентов предусмотрены также щупы-щипцы для мультиметра. Они позволяют измерить нужные параметры детали как на рабочем столе, так и непосредственно на плате.

На время измерения компонент зажимается щипцами, что гарантирует качество контакта. Эти изделия имеют достаточно короткий кабель, но длинный для работы с SMD и не нужен.

Если процесс измерения требует максимальной аккуратности, чтобы не допустить касания электродом других деталей, то лучше всего воспользоваться щупами, на концах которых имеются отверстия.

С их помощью можно производить измерения как на печатных платах, так и в ходе электромонтажных работ, не боясь случайно спровоцировать короткое замыкание.

Устройство

Развитие сегмента радиоэлектроники привело не только к совершенствованию первоначальных механизмов, но и к возникновению принципиально новых индуктивных датчиков. В качестве примера рассмотрим один из простейших вариантов (рисунок 1):


Рис. 1. Устройство индуктивного датчика

Как видите на рисунке, в его состав входят:

САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА

Самодельные осциллографы перестают быть редкостью по мере развития микроконтроллеров. И естественным образом возникает потребность в щупе для него. Желательно со встроенным делителем. Некоторые из возможных конструкций рассмотрены в данной статье.

Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:

Щуп в разобранном виде:

Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:

В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.

В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.

Читайте также:  Как сделать поверхностный погреб своими руками

Принцип работы

Принцип действия индуктивного датчика заключается в способности электромагнитного поля изменять свои параметры, в зависимости от значения магнитной проводимости на пути протекания потока. В основе его работы лежит классический вариант катушки, намотанной на сердечник.


Рис. 2. Магнитное поле в состоянии покоя

При протекании электрического тока I по виткам этой катушки генерируется магнитное поле (см. рисунок 2), результирующий вектор магнитной индукции B которого определяется по правилу Правой руки. При движении магнитного поля по сердечнику, ферромагнитный материал обеспечивает максимальную пропускную способность. Но, как только линии магнитной индукции попадают в воздушное пространство, магнитная проводимость существенно ухудшается и часть поля рассеивается.


Рис. 3. Магнитное поле при введении объекта срабатывания

При внесении в область действия поля индуктивного датчика объекта срабатывания (рисунок 3), изготовленного из металла, напряженность линий индукции резко изменяется. В результате чего усиливается поток и меняется его значение, а это, в свою очередь, приводит к изменению электрической величины в цепи катушки за счет явления взаимоиндукции. На практике этот сигнал слишком мал, поэтому для расширения предела измерения индуктивного датчика в их схему включается усилитель.

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.


Рис. 4. Область и объект срабатывания

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:


Рис. 5. Зависимость расстояния срабатывания от материала

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.


Рис. 6. Одинарый и дифференциальный датчик

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Наконечники-«крокодилы»

Этот вариант наконечника тоже имеется на современном рынке и пользуется немалым спросом. В ряде случаев он оказывается предпочтительнее острых электродов. Размер «крокодила» может быть различным, но в любом случае он должен иметь надежную оболочку из диэлектрического материала.

В форме «крокодилов» могут выполняться присоединительные наконечники, идущие в качестве дополнительного элемента для стандартного щупа. Зачастую в состав комплекта к мультиметру входят наконечники в форме пристегивающихся «крокодилов», которые при необходимости можно как отсоединять, так и пристегивать.

Специалисты, работающие с компонентами выводов, предпочитают наконечники, выполненные в форме зажимов и крючков. С помощью таких элементов удобно производить измерительные работы на печатных платах, а также удерживать на месте во время измерений компоненты выводов. Эти наконечники так же, как иглы и крокодилы, могут входить в комплект поставки.

Преимущества и недостатки

В сравнении с другими типами сенсорных устройств индуктивные датчики продолжают занимать весомую нишу, наращивая темпы внедрения в различные сферы промышленности и отрасли народного хозяйства. Такое частое применение объясняется рядом весомых преимуществ:

Но, вместе с тем, существуют и недостатки индуктивных датчиков, которые не позволяют использовать их повсеместно. Среди наиболее существенных минусов являются громоздкие размеры, не позволяющие монтировать их в любых устройствах. Также к недостаткам относится зависимость параметров работы от температурных и других факторов, вносящих поправку на точность.

Процесс изготовления щупов

Примеряем наконечник от дротика. Нужно, чтобы он подошёл по размеру вместо наконечника ручки. Если не подходит, то придётся срезать резьбу на ручке. Если это не поможет, то придётся найти другие ручки.

Берём наконечник дротика, греем его газовой горелкой. После достаточного нагрева берём кусочек припоя, смоченного в паяльной кислоте, и бросаем внутрь. Опускаем туда же провод и ждём, пока припой остынет.

Собираем щуп. Наконечник лучше приклеить.

Второй комплект. Щупы с иглами для проколов изоляции. Берём карандаши со сменными грифелями, разбираем.

Берём иглы, примеряем их вместо грифелей.

Припаиваем к иглам провода.

Вставляем иглу с проводом в карандаш сзади. С первого раза может не получиться, нужно попасть в центр цанги карандаша. Иглы в цангу нужно вклеить, иначе при надавливании они уйдут внутрь.

Источник

Оцените статью