Инфракрасный выключатель света своими руками

Самодельные сенсорные выключатели света — схема и принцип действия

«Умный дом» давно стал реальностью и набирает популярность. Полезные гаджеты и программируемые электроприборы облегчают быт человека. Сенсорный выключатель может быть частью комплекса или использоваться отдельно. Механическое нажатие больше не является единственным замыкающим сигналом. Работа устройства основана на электропроводимости человеческого тела или отражении инфракрасных лучей. Датчик реагирует на легкое прикосновение или движение.

Конструкция «умного» выключателя

Понятие «сенсорный» трактуется по-разному в зависимости от источника. В широком смысле это аналог клавиши или кнопки питания, который реагируют на голос, движение, степень освещенности помещения и т. д. Он не требуют механического действия. В узком смысле — прибор работающий за счет энергоемкости человека. Конечность человека, приближаясь к чувствительной пластине, становится частью электроцепи, замыкает её. За счет действия специального элемента схемы (триггера) не происходит размыкания после отдаления раздражителя, стабильное состояние системы сохраняется. Отсутствие движущихся деталей исключает их поломку и облегчает влажную уборку поверхности.

Наружная часть — лицевая стеклянная или пластиковая панель и огнеупорный корпус. Квадратные, прямоугольные модели встречаются чаще круглых. Размер соответствует обычному клавишному выключателю, что позволяет использовать для монтажа стандартное гнездо. Функция крышки защитная и декоративная.

Чувствительный элемент — пластина с ёмкостными сенсорами или пара инфракрасный излучатель+приёмник, могут присутствовать дополнительные датчики. Задача сенсора уловить сигнал извне.

Силовая составляющая — печатная плата с SMD компонентами: блок питания, усилители, микроконтроллер, плата радиоканала, ключ, энергозависимая память.

Иногда в комплект входит дополнительный конденсатор, чтобы предотвратить фоновое свечение газоразрядных ламп в выключенном состоянии.

Классификация переключателей

Чтобы правильно выбрать коммуникатор, следует исходить из назначения помещения, количества и характеристик светильников. По параметру напряжению устройства бывают:

  • 220 В — стандартный показатель для большинства приборов;
  • 12 В — подойдёт к LED лентам и некоторым другим типам осветителей.

По количеству подключённых источников света применяют одинарные, двойные, тройные выключатели. Большее количество удобнее контролировать дистанционным пультом.

По виду ключа можно выделить:

  • с электромагнитным реле — замыкание происходит механически, поэтому контакты со временем обгорают;
  • оснащённые симистором — полупроводниковый прибором.

Типы чувствительного элемента в бытовых переключателях:

  • ёмкостный — требует легкого касания;
  • оптический — реагирует на движение или уровень освещённости;
  • высокочастотный — настроен на присутствие, заполненность помещения (объёма), движение.

  • датчики движения, объёма, звука;
  • беспроводное управление;
  • плавное снижение яркости при выключении;
  • таймер.

Сенсорные переключатели расширяют возможности освещения, упрощают управление, позволяют экономить время и затраты электроэнергии. Они могут быть автономными или монтироваться в корпуса светильников: торшеров, настольных ламп, LED профилей.

Самостоятельная сборка сенсорных коммуникаторов

Главный минус «умных» выключателей — цена. Наличие базовых знаний электротехники поможет собрать самоделку. Домашние умельцы используют 3 основных варианта сборки.

Схема сенсорной кнопки на транзисторах самая простая. Для её осуществления потребуется макетная плата, на которой монтируются последовательно соединенные транзисторы КТ315 и электромеханическое реле, параллельно с которым обязательно нужно установить защитный диод. Сенсором послужит провод от базы транзистора, подключаемого к сети. Цепь можно усложнить, добавив перед реле оптрон и триггер (таймер NE555 или микросхема К561ТМ2). Такая модификация позволит сети фиксировать команду.

Инфракрасный сенсорный выключатель своими руками можно собрать, добавив в схему генератор прямоугольных импульсов. Для увеличения тока от генератора поможет инфракрасный мигающий светодиод. На микросхеме устанавливается временной интервал. Он определяет, через какое время после прекращения поступления сигнала выключится свет. При попадании отражения луча на фотоприёмник, счётчик К561ИЕ20 или CD4040 выдаст единицу, цепь замкнётся. При отсутствии сигнала на всех выводах логический ноль, не поступает напряжение, управляющий транзистор не пропускает ток.

Схема инфракрасного выключателя

Сенсорные выключатели промышленного производства можно доработать и расширить площадь чувствительности. Под крышкой нужно найти ёмкостный элемент и припаять к нему тонкий проводок. После чего проводник уложить увеличивающимся кольцами до заполнения всего периметра. Вернуть на место защитную панель.

Переключатели приспосабливаются не только под светильники, но и в качестве дверного звонка, раздвигателя штор и прочее. Все детали можно приобрести на радиорынках или китайских интернет-платформах по бюджетной цене.

Безопасность при монтаже

Перед установкой обязательно обесточить сеть, опустив рубильник защитного автомата в распределительном щитке. Сенсорные коммуникаторы монтируются без лицевой панели. Соблюдается правило полюсовки. Если в линии есть заземляющий провод, он подключается на промаркированный контакт. Концы многожильного кабеля опрессовывают или заслуживают, чтобы плотно зафиксировать и избежать перегрева.

Читайте также:  Вышиваем платье своими руками

Нельзя использовать приспособления с явными повреждениями или не рассчитанные на заданную нагрузку сети. Самодельные сенсорные выключатели света 220 В не всегда выдерживают — большинство домашних схем рассчитаны на низковольтных потребителей.

Нельзя начинать монтаж до ознакомления с инструкцией производителя.

Источник

Оптический бесконтактный выключатель освещения своими руками

Преимущество данного бесконтактного выключателя в отличие от других схем дистанционного включения света, например, сенсорный выключатель, состоит в том, что им можно включать и выключать освещение или же любую другую нагрузку бесконтактным способом то есть, не прикасаясь своими руками непосредственно к устройству.

Осуществлять управление освещением можно двумя разными путями. Первый, поднеся руку непосредственно к оптическому датчику данного выключателя на расстоянии 10 сантиметров. Второй, посредством любого типового пульта дистанционного управления использующий в своей работе модулированное инфракрасное излучение.

Простой взмах рукой либо нажатие на произвольную кнопку ПДУ и бесконтактный выключатель меняет свое состояние на противоположное. В случае сбоя в электросети и при возобновлении электроснабжения, оптический выключатель света будет находиться в выключенном состоянии.

Повысив силу излучения инфракрасного светодиода, выполняющего роль оптического датчика, можно добиться увеличения дальности действия срабатывания устройства. В этом случае, к примеру, устройство может оповещать охрану о подъезде автомобиля к пропускному пункту.

Описание работы оптического бесконтактного выключателя.

В схеме применена всего одна интегральная микросхема К561ТМ2, имеющая в своем составе два D-триггера. На первом триггере DD1.1 собран мультивибратор, создающий прямоугольные импульсы в диапазоне 35…40кГц. Подстройка частоты осуществляется путем подбора сопротивлений R1 и R2.

Данные импульсы, пройдя сквозь токоограничивающий резистор R3, поступают на ИК-светодиод HL1. Можно применить любой подходящий ИК-светодиод, к примеру, такой который используется в ПДУ. Совместно с фотодатчиком они создают оптическую схему, которая срабатывает при отражении инфракрасного излучения.

Для предотвращения ложных срабатываний между фотодатчиком и ИК-светодиодом, необходимо проложить непрозрачную перегородку, а так же они должны быть обращены в сторону, куда подносят руки. Схема запитана от бестрансформаторного источника питания собранного на диодном мосте VD4, гасящем резисторе R7 и стабилитроне VD3 на 4.7В. Конденсатор C5 предназначен для фильтрации выпрямленного напряжения.

В момент подачи напряжения на бесконтактный выключатель освещения, через резистор R5 идет зарядка конденсатора C4. В результате этого на вход триггера DD1.2 поступает импульс, из-за которого на инверсном его выходе 2 появляется уровень лог.0. транзистор VT1 закрыт и лампа не горит.

Так же после подачи питания на схему оптического выключателя, мультивибратор начинает генерировать импульсы. Приблизительная частота их составляет 38 кГц, и соответственно светодиод испускает излучение с такой же частотой. Если теперь поднести руку к окошку, где расположен оптический блок выключателя, то отраженный луч от руки попадет на фотоприемник. На его выходе образуется низкий уровень напряжения, убрав руку, вновь появляется высокий уровень. Таким образом, формируется импульс, который поступая на вход 3 триггера DD1.2 переключает его в противоположное состояние, тем самым включая освещение.

Источник

Дистанционный выключатель

Идея сего девайса у меня родилась, когда, перебирая свою кучу сокровищ (радиохлама) обнаружил несколько вполне исправных пультов ДУ от телевизоров. Давно вынашивая идею «умного дома», решил, что хорошим подспорьем будет установка в пределах рабочего кабинета блоков реле, управляемых дистанционно и коммутирующих всевозможную нагрузку – эдакая «умная комната».

Т. к. найденные мною пульты оказались с протоколами типа Sony и NEC (особенности данных протоколов описаны всеми, кому не лень, а я повторяться не хочу, информации в интернете предостаточно!), пришлось продумывать универсальный алгоритм работы под любой пульт. Порывшись в интернете, нашёл несколько алгоритмов реализации универсального декодера ИК-сигналов от разных типов пультов, из которых понравилась идея создания шаблона на основе одного фрагмента ИК-посылки, с которым уже сравниваются идущие следом ИК-сигналы. Разобраться в исходнике не составит проблем – сама программа небольшая по объёму и код с подробными комментариями.

Представленный выключатель собран на одной из любимых мною букашек — ATtiny13, которая управляет одним релейным блоком. Кнопка SB1 предназначена для обучения выключателя, т.е. запоминания кода нажатой кнопки пульта ДУ. Обучение происходит следующим образом: при кратковременном нажатии на кнопку кратковременно мигнёт светодиод, после чего можно нажимать любую кнопку пульта ДУ, которую вы хотите запомнить. Код с пульта ДУ будет записан в буферную переменную, расположенную в памяти eeprom, при этом светодиод мигнёт два раза. При длительном нажатии кнопки SB1 буферная переменная будет очищена. Устройство позволяет работать со всеми видами ИК-пультов, однако надо иметь ввиду, если у вас пульт протокола RC5, то для работы с выключателем необходимо кратковременно нажимать кнопки пульта. Т.к. в данном протоколе повторная передача представляет собой полную ИК-команду, а не небольшой импульс, характерный для протоколов NEC, Sony и JVC, то при длительном нажатии кнопки пульта будет происходить постоянное срабатывание дистанционного выключателя (включение-выключение).

Читайте также:  Как своими руками заднюю полку ваз 2110

Небольшой нюанс по выбору резистора R1 — его мощность должна быть не менее 0,5 Вт!

В архиве представлены печатные платы двух видов: с «нормальными» деталями, и для любителей попортить себе зрение — печатная плата для SMD-монтажа.

Расположение элементов (схема на первом рисунке показана со стороны расположения деталей, второй рисунок — со стороны расположения SMD-компонентов):

И, собственно, схема подключения устройства:

Питание данной схемы осуществляется напрямую от сети 220В, поэтому проявляйте максимальную осторожность при её подключении!

Такое полезное устройство (особенно растиражированное единицами, а то и десятками) несомненно доставит вам удовольствие управления всевозможными исполнительными устройствами, лёжа на любимом диване у себя дома.

Список радиоэлементов дан для первого варианта печатной платы (в SMD-исполнении будет незначительно отличаться только тип некоторых компонентов).

Источник

Выключатель света на «ИК лучах» для одной лапы

Выключатель света на «ИК лучах» для одной лапы

Достоинство дистанционного управления на ИК лучах (далее просто ДУ) все уже испытали на собственном опыте. ДУ вторглось в нашу повседневную жизнь и в достаточной мере экономит наше время. Но на данный момент, к сожалению, не на все электроприборы устанавливают ДУ. Это относиться и к выключателям света. Нашей промышленностью, правда, на данный момент выпускается такой выключатель, но стоит он не маленькие деньги, да и найти его очень и очень сложно. В этой статье предлагается довольно простая схема такого выключателя. В отличие от промышленной, которая включает в себя одну БИСку, она в основном собрана на дискретных элементах, что, конечно, увеличивает габариты, но зато в случаи необходимости легко подвергается ремонту. Но если гнаться за габаритами, то в этом случаи можно использовать планарные детали. Эта схема также обладает и встроенным передатчиком (в промышленных его нет), что избавляет вас от надобности всЈ время носить с собой пульт или искать его. Достаточно поднести к выключателю руку на расстоянии до десяти сантиметров как он сработает. ЕщЈ одно преимущество заключается в том, что к ДУ подходят любые пульты от любой импортной или отечественной радиотехники.

На рис.1 приведена схема излучателя коротких импульсов [1]. Что позволяет уменьшить потребляемый передатчиком ток от источника питания, а значит продлить срок службы на одной батарее питания. На элементах DD1.1, DD1.2 собран генератор импульсов, следующих с частотой 30. 35 Гц. Короткие, длительностью 13. 15 мкс, импульсы формирует дифференцирующая цепь C2R3. Элементы DD1.4-DD1.6 и нормально закрытый транзистор VT1 образуют импульсный усилитель с ИК диодом VD1 на нагрузке. Зависимость основных параметров такого генератора от напряжения питания Uпит показаны в таблице.

Uпит, В
Iимп, А
Iпот, мА
4.5
0.24
0.4
5
0.43
0.57
6
0.56
0.96
7
0.73
1.5
8
0.88
2.1
9
1.00
2.8

Здесь: Iимп — амплитуда тока в ИК диоде, Iпот — ток, потребляемый генератором от источника питания (при указанном на схеме номиналом резисторов R5 и R6). Печатная плата приведена на рис.2. ЕЈ предлагается изготовить из двухстороннего фольгированного стеклотекстолита толщиной 1,5 мм. Фольга со стороны деталей (на рисунке не показана) выполняют функцию общего (минусового) провода источника питания. Вокруг отверстий для пропускания выводов деталей в фольге вытравлены участки диаметром по 1,5. 2 мм. Выводы деталей, соединЈнных с общем проводом, припаивают непосредственно к фольге этой стороны платы. Транзистор VT1 крепят к плате винтом М3, без какого либо теплоотвода. Оптическая ось ИК диода VD1 должна быть параллельна плате, и отстоять от неЈ на 5 мм.

Данная схема передатчика представлят собой генератор на транзисторах разной структуры (Рис.3). Думаю описание его работы не требуеться. Напряжение питание такого генератора может колебаться от напряжения устойчевой самогенерации до прямого напряжения транзисторов. Что состовляет порядка 1.7. 15V ОстаЈтся только напомнить что при повышении питания в цепь ИК-диода следует включить ограничительный резистор, либо ещЈ один ИК-диод. Передатчиком также может служить также любой пуль дистанционного управления от отечественной или импортной техники (телевизора, видеомагнитофона, музыкального центра).

Приемник собран по классической схеме принятой в российской промышленности (в частности в телевизорах Рубин, Темп и т.п.) [1]. Его схема приведена на рисунке 4. Импульсы ИК-излучения попадают на ИК фотодиод VD1, преобразуются в электрические сигналы и усиливаются транзисторами VT3, VT4, каторые включены по схеме с общем эмиттером. На транзисторе VT2 собран эмиттерный повторитель, согласующий сопротивление динамической нагрузки фотодиода VD1 и транзистора VT1 с входным сопротивлением усилительного каскада на транзисторе VT3. Диоды VD2,VD3 предохраняют импульсный усилитель на транзисторе VT4 от перегрузок. Все входные усилительные каскады приемника охвачены глубокой обратной связью по току. Это обеспечивает постоянное положение рабочей точки транзисторов независимо от внешнего уровня засветки — своего рода автоматическую регулировку усиления, особенно важную при работе приемника в помещениях с искусственным освещением или на улице при ярком дневном свете, когда уровень посторонних ИК-излучений очень высок.

Читайте также:  Изготовление бура для столбов своими руками

Далее сигнал проходит через активный фильтр с двойным Т-образным мостом, собранный на транзисторе VT5, резисторах R12-R14 и конденсаторах C7-C9. Транзистор VT5 должен иметь коэффициент передачи тока Н21э=30, в противном случаи фильтр может начать возбуждаться. Фильтр очищает сигнал передатчика от помех сети переменного тока, которые излучаются электрическими лампами. Лампы создают модулированный поток излучения с частотой 100 Гц и не только видимой части спектра, но и в ИК области. Отфильтрованный сигнал кодовой посылки формируется на транзисторе VT6. В результате на его коллекторе получаются короткие импульсы (если поступали с внешнего передатчика) или пропорциональные с частотой 30. 35 Гц (если поступали от встроенного передатчика).

Импульсы, поступающие с приЈмника, поступают на буферный элемент DD1.1, а с него на выпрямительную цепочку. Выпрямительная цепочка VD4, R19, C12 работает так: Когда на выходе элемента логический 0, то диод VD4 закрыт и конденсатор С12 разряжен. Как только на выходе элемента возникают импульсы, конденсатор начинает заряжаться, но постепенно (не с первого импульса), а диод препятствует его разрядке. Резистор R19 выбран таким образом, чтобы конденсатор успел зарядиться до напряжения равного логической 1 только с 3. 6 импульса поступающего с приЈмника. Это ещЈ одна защита от помех, коротких ИК вспышек (например, от фотовспышки фотоаппарата, разряда молнии и т. п.). Разряд конденсатора происходит через резистор R19 и занимает по времени 1. 2 с. Это позволяет предотвратить дробление и произвольное включение, и выключение света. Далее установлен усилитель DD1.2, DD1.3 с Јмкостной обратной связью (C3) для получения на его выходе резких прямоугольных перепадав (при включении и выключении). Эти перепады поступают на вход триггера делителя на 2, собранного на микросхеме DD2. Не инвертный его выход подключЈн к усилителю на транзисторе VT10, который управляет тиристором VD11, и транзистор VT9. Инвертный же подан на транзистор VT8. Оба эти транзистора (VT8, Vt9) служат для зажигания соответствующего цвета на светодиоде VD6 при включении и выключении света. Он выполняет ещЈ и функцию «маяка» при выключенном свете. На вход R триггера делителя подключена RC цепочка, которая осуществляет сброс. Он нужен для того, чтобы если отключили напряжения в квартире, то после включения свет случайно не зажЈгся.

Встроенный передатчик служит для включения света без пульта дистанционного управления (при поднесение ладони к выключателю). Он собран на элементах DD1.4-DD1.5, R20-R23, C14, VT7, VD5. Встроенный передатчик представляет собой генератор импульсов с частотой следования 30. 35 Гц и усилитель в нагрузку каторгой включЈн ИК светодиод. ИК светодиод устанавливается рядом с ИК фотодиодом и должен быть направлен с ним в одну сторону, и они должны быть разделены светонепроницаемой перегородкой. Резистор R20 подбирается таким образом, чтобы расстояние срабатывания, при подносе ладони, было равно 50. 200 мм. Во встроенном передатчике можно использовать ИК диод типа АЛ147А или любой другой. (Я, к примеру, использовал ИК диод от старого дисковода, но при этом резистор R20=68 Ом).

Блок питания собран по классической схеме на КРЕН9Б и выходное напряжение равно 9В. Он включает в себя DA1, C15-C18, VS1, T1. Конденсатор С19 служит для защиты устройства от скачков напряжения в электросети.Нагрузка на схеме показана лампой накаливания.

Печатная плата приЈмника (рис.5) выполнена из одностороннего фольгированного стеклотекстолита размером 100Х52 мм и толщиной 1,5 мм. Все детали, за исключением диода VD1, устанавливают как обычно, эти же диоды устанавливаются со стороны монтажа. Диодный мост VS1 собран на дискретных выпрямительных диодах часто применяемых в импортной технике. Диодный мост (VD8-VD11) собран на диодах серии КД213 (в схеме указанны иные), диоды при впайки располагаются один над другим (столбиком), этот способ применЈн в целях экономии места.

Источник

Оцените статью