Искровая катушка своими руками

Самодельная индукционная катушка Румкорфа

Для проведения опытов с электричеством и для постройки некоторых приборов, будет необходим, кроме понижающего, и мощный повышающий трансформатор, каким является катушка Румкорфа — индукционная катушка.

Желательно построить катушку, которая давала бы искру длиной в 10—15 сантиметров. Это в значительной степени облегчило бы постройку таких приборов, как, например, рентгеновский аппарат.

Но особенно увлекаться большой мощностью индукционной катушки не следует, так как изоляция провода может не выдержать слишком высокого напряжения и катушка сгорит.

При наличии же материалов, имеющихся в продаже, вполне возможно построить индукционную катушку с искрой в 8—10 сантиметров. А этого для начала будет вполне достаточно.

Принцип действия индукционной катушки в точности такой же, как и трансформатора, поэтому мы не будем останавливаться на этом вопросе.

Катушку Румкорфа для нас вполне может заменить бобина от автомашины. Но если такой не окажется в нашем распоряжении, то индукционную катушку придется изготовить самим.

Детали катушки Румкорфа

Сердечник

Сердечник катушки делается из железной проволоки, которая употребляется для упаковки ящиков, или жести от консервных банок. Проволоку или жесть, предназначенную для сердечника, необходимо отжечь, то есть накалить в печи до тёмно-красного накала и затем медленно остудить в горячей золе. После этого с проволоки надо тщательно счистить окалину и покрыть проволоку спиртовым лаком, или, лучше, шеллаком.

После того как проволока просохнет, ее складывают в пучок и крепко обматывают изоляционной лентой. Поверх изоляционной ленты на сердечник следует намотать еще слоя четыре пропарафиненной бумаги.

Готовый сердечник и его размеры показаны на рисунке: Рисунок 1: а — сердечник для катушки Румкорфа, б — секции для вторичной обмотки, в — футляр для катушки Румкорфа с разрядником.

После этого можно приступить к изготовлению обмоток.

Обмотка сердечника

Обмотка сердечника производится в той же последовательности, как и у всякого трансформатора, то есть сначала наматывается первичная обмотка и на нее — вторичная, повышающая обмотка.

Так как большинство аккумуляторов и батарей накала имеет в среднем напряжение 4 вольта, то и нам лучше сделать индукционную катушку, которая работала бы от 4 вольт.

Для этого на первичную обмотку нам потребуется медный изолированный провод, желательно с двойной шелковой изоляцией, диаметром 1,5 мм. Такой проволоки нам потребуется 25 метров.

Закрепив конец провода ниткой на расстоянии 40 мм от торца сердечника и оставив конец провода длиной в 100 мм, намотку производят по часовой стрелке, с плотной укладкой витка к витку. Когда таким образом сердечник будет обмотан одним слоем провода по длине 220 мм, делается петля длиной в 100 мм, провод снова закрепляется ниткой и ведется второй слой намотки в том же направлении.

Намотав второй слой, конец обмотки нужно прочно закрепить с помощью суровой нитки и всю обмотку залить горячим парафином.

Средний отвод от первичной обмотки позволит нам применять в работе напряжение в 2 вольта, а следовательно, вдвое повысить коэффициент трансформации и в конечном итоге увеличить длину искры. Использованием же одновременно обеих секций, параллельно включенных, мы сможем подать на первичную обмотку повышенный ток и тем самым еще несколько увеличить мощность искры.

Вторичную обмотку катушки необходимо сделать многосекционной. Многосекционная обмотка облегчит ее исправление в случае повреждения. Ведь перемотать одну поврежденную секцию значительно легче, чем перематывать всю обмотку, состоящую из многих тысяч витков тончайшего провода.

Для вторичной обмотки нам придется изготовить 10 таких секций, которые нанизываются на сердечник одна за другой. Каждая секция изготовливается из картона толщиной в 1 мм, предварительно проваренного в парафине. Это необходимо для повышения изоляционных качеств картона. Лучше, конечно, если вы сделаете катушки из тонкой фибры.

Внутреннее отверстие катушек должно быть таким, чтобы они с трением надевались на сердечник с первичной обмоткой, поверх которой предварительно будет намотано еще два слоя пропарафиненной бумаги.

Когда все катушки будут готовы, можно приступить к изготовлению вторичной обмотки. Для вторичной обмотки нам потребуется изолированный провод ПЭ или ПШО, диаметром 0,1 мм. Будьте осторожны, особенно при намотке проводом ПШО, так как под шелко­вой изоляцией трудно заметить обрыв такого тонкого проводника. А если будет обрыв, то вся работа пойдет впустую.

Секции вторичной обмотки также надо наматывать аккуратно, виток к витку, и обязательно все секции должны быть намотаны в одном направлении. Следует также, намотав несколько слоев, проложить слой пропарафиненной бумаги и продолжать намотку.

Если во время намотки будет обнаружен обрыв провода, то концы его надо тщательно зачистить, скрутить между собой и обязательно спаять, а затем тщательно изолировать пропарафиненной бумагой.

Намотку каждой секции следует закончить, не доходя 5 мм до верхнего борта катушки. На этом расстоянии делается тонкий прокол в щечке катушки; провод прочно закрепляют в ней и оставляют свободный конец в 5—7 см.

Обмотку катушки сверху покрывают несколькими слоями пропарафиненной бумаги и изоляционной лентой.

Когда будут намотаны все 10 секций, первичная обмотка покрывается 2—3 слоями пропарафиненной бумаги и на нее надеваются секции второй обмотки. При этом надо следить, чтобы все катушки были надеты в последовательном порядке, то есть их обмотки составляли бы продолжение одна другой. В таком же последовательном порядке их и соединяют между собой: конец обмотки первой секции соединяется с началом обмотки второй секции, а конец второй секции — с началом третьей секции и т.д.

К началу и концу вторичной обмотки припаивается по куску толстого гибкого провода длиной по 15 см каждый; после этого вся катушка заливается парафином так, чтобы она представляла сплошную парафиновую массу. При этом надо следить, чтобы не оставалось пустот между секциями, не залитых парафином. Следовательно, катушку надо заливать постепенно. Для удобства заливки надо склеить из картона цилиндр диаметром 115 мм и длиной 240 мм.

Катушку устанавливают в цилиндре так, чтобы между ней и стенками цилиндра было одинаковое расстояние. После этого в цилиндр осторожно, не спеша, наливают расплавленный парафин. После остывания парафина цилиндр с катушки снимать не надо — он будет служить футляром. Его нужно только закрыть с торцов картонными дисками.

Механический прерыватель для катушки

Механический прерыватель для катушки можно сделать таким же, как и у электрического звонка. Поэтому, если у кого найдется старый электрический звонок, то им вполне можно воспользоваться.

Читайте также:  Как научиться шить обувь своими руками

Прерыватель необходим для того, чтобы из постоянного тока, который поступает от аккумулятора, получалось переменное напряжение, иначе трансформатор-катушка не будет трансформировать ток.

Для механического прерывателя надо изготовить детали, указанные на рис. 2. Якорь а вырезается из упругого железа. Лучше, конечно, сделать его из тонкой стальной пластинки, потому что он должен хорошо пружинить. Контактную пластину б можно сделать из латуни толщиной в 2 мм или из жести.

Как в якорь, так и в контактную пластину для лучшего соединения между ними при работе необходимо вклепать серебряные контакты. Их можно сделать из старинной серебряной монеты. Рис. 2. Детали прерывателя катушки Румкорфа. а — якорь прерывателя катушки Румкорфа, б — контактная пластина к якорю, в — собранный прерыватель.

Прерыватель собирается на внутренних стенках футляра катушки. На нижней стенке прикрепляется якорь так, чтобы он был на расстоянии 2—3 мм от сердечника катушки. К противоположной стенке прикрепляется контактная пластина так, чтобы она своим серебряным контактом хорошо прижималась к серебряному контакту якоря (см. рис. 2в). Конец первичной обмотки катушки присоединяется к якорю, а от контактной пластины делается отвод, к которому мы будем присоединять второй полюс аккумулятора.

Прерыватель действует так: когда мы включаем напряжение, то ток через контактную пластину, соединенную с якорем, проходит по первичной обмотке катушки. В это время сердечник намагничивается и притягивает якорь. Якорь, притянувшись к сердечнику, размыкает цепь. С отсутствием электрического тока магнитные силы исчезают из сердечника, якорь вновь возвращается в прежнее положение, то есть замыкает цепь, ток вновь поступает в катушку, сердечник опять притягивает якорь и т.д.

Таким образом в первичной обмотке нашей катушки создается переменное напряжение, которое трансформируется вторичной обмоткой и повышается в несколько сот раз.

Из сказанного выше нетрудно понять, что если у кого-нибудь найдется повышающий трансформатор, то его легко можно переделать в катушку Румкорфа. Для этого придется только сменить сердечник—сделать его прямым, не замыкающимся, как у обычных трансформаторов, и устроить прерыватель.

Искра такой катушки будет зависеть от соотношения витков первичной и вторичной обмоток. У кого найдется понижающий трансформатор с напряжением в 4—6 вольт, тот может использовать катушку Румкорфа как повышающий трансформатор, включив в нее переменный ток в 4—6 вольт, и снять то же напряжение с повышающей обмотки, как и от аккумуляторов. Только в этом случае включать напряжение надо прямо в первичную обмотку катушки, минуя прерыватель.

Разрядник

Разрядник устроен очень просто. Он состоит из двух стоек с контактами, к которым присоединяются концы вторичной обмотки катушки. На вершинах стоек укреплены два стержня, направленных друг к другу.

Если стержни будут сдвинуты на такое расстояние, которое может покрыть искра, вырабатываемая нашей катушкой, то между стержнями образуется сплошная дуга из электрических искр.

Стойки устанавливаются на крышке деревянного футляра катушки на расстоянии 150 мм. Их можно изготовить из сухого дерева или изоляционных материалов — фибры, эбонита, карболита. Стойки делаются длиной 150 мм и диаметром 20 мм. На расстоянии 30 мм от одного торца в стойках просверливаются сквозные отверстия для стержней, а с торцов просверливаются отверстия по центру до пересечения стержневых отверстий. В них будут ввертываться крепящие винты.

Если стойки будут сделаны из дерева, то в торцы можно просто ввернуть шурупы. Рядом со стойками ввертываются две клеммы, к которым снизу крышки присоединяются начало и конец вторичной обмотки, если катушка будет работать от переменного тока.

Если же она будет работать от аккумулятора, то нужно будет изготовить еще и прерыватель. Тогда соединение будет иным. Готовый и установленный разрядник показан на рис. 1в. Для лучшего предохранения катушки от всяких случайных повреждений надо сделать деревянный футляр. Размеры его показаны на рис. 1в.

Источник

Катушка Тесла: что это, для чего она нужна и как создать ее своими руками в домашних условиях

Никола Тесла, как и многие другие физики, многие годы своей жизни посвятил изучению энергии токов и способам ее передачи, созданию уникальных разработок. Одной из них была катушка Тесла – это резонансный трансформатор, предназначенный для получения токов высокой частоты.

Тесла, определенно, был гением. Именно он принес в мир использование переменного тока и запатентовал множество изобретений. Одно из них — знаменитая катушка, или трансформатор Тесла. Если у вас есть определенные знания и навыки, вы вполне можете самостоятельно создать катушку Тесла дома. Давайте выяснять, какова суть этого устройства и как создать его в домашних условиях, если вам вдруг этого очень сильно захотелось.

Что такое катушка Тесла и зачем она нужна?

Как уже отмечалось ранее, катушка Тесла представляет собой резонансный трансформатор. Назначение трансформатора — изменение значения напряжения электрического тока. Эти приборы бывают соответственно понижающие и повышающие.

Более подробно подробно о трансформаторах, их общем устройстве и назначении читайте в нашем отдельном материале.

С точки зрения электроники катушка Тесла представляет собой две обмотки без общего сердечника и с разным числом витков. Трансформатор Тесла — повышающий трансформатор. Напряжение на выходе такого трансформатора возрастает в сотни раз и может достигать значений порядка миллиона вольт.

Изобретение Теслы не просто работает, а работает очень зрелищно. Включив трансформатор, можно наблюдать эффектные разряды (молнии), длина которых достигает нескольких метров.

Из чего состоит катушка Тесла

Прежде чем собирать катушку Тесла, рассмотрим ее составляющие и форму.

Строение катушки Тесла

Тороидальные фигуры: что это?

Катушка Тесла выполняется в форме Тора (тороидальной фигуры, тороида).

Тороидальные фигуры в первую очередь понятие из геометрии. Тор — поверхность, полученная путем вращения образующей окружности вокруг оси, лежащей в плоскости этой окружности.

Лучше один раз взглянуть, чем пытаться себе представить. На рисунке ниже — тороидальные поверхности.

Вот так выглядит классическая тороидальная фигура

Тороид является важной составляющей катушки Тесла и изготавливается, как правило, из алюминиевой гофры. В составе этого устройства он выполняет следующие функции:

  • уменьшает резонансную частоту;
  • аккумулирует энергию перед образованием стримера;
  • создает электростатическое поле, отталкивающее стример от вторичной обмотки трансформатора.

Кстати, о том, что такое стример, можно прочитать в нашей отдельной статье, посвященной молниям.

Нельзя не обратить внимение на забавную игру слов. В скандинавской мифологии Тор — бог грома и молний. Составляющая катушки Тесла, благодаря которой образуется разряд (молния) — Тор, или тороид.

Вторичная обмотка

Вторичная обмотка — основная составляющая катушки Тесла, которую также называют просто «вторичка». Обмотка, как правило, содержит около 800-1200 витков, а мотают ее на трубах ПВХ, которые можно купить в обычном строительном магазине.

Исходя из необходимого количества витков выбирается диаметр провода обмотки. Стандартное отношение длины вторичной обмотки катушки к ее диаметру — 4:1 или 5:1. Для того, чтобы витки не расползались, их покрывают лаком.

Первичная обмотка и защитное кольцо

Первичная обмотка (или первичка) катушки Тесла должна иметь низкое сопротивление, так как по ней будет проходить большой ток. Обычно ее изготавливают из проводов сечением более, чем 6 миллиметров. Также в качестве первичной обмотки часто используют медную трубу для кондиционеров.

Читайте также:  Гараж трансформер своими руками

Форма первичной обмотки — цилиндрическая, плоская или коническая.

Защитное кольцо — незамкнутый плоский виток заземленного медного провода. Кольцо устанавливается для того, чтобы стример из тороида, попав в первичную обмотку, не вывел из строя электронику.

Понятие эфира и идеи Теслы

Теперь мы знаем, из чего состоит катушка Тесла. Но какова история этого изобретения? Чтобы ответить на этот вопрос, стоит разобраться с тем, что же такое эфир.

Эфир – это физическая среда, гипотетическое вещество или поле, которое заполняет пространство Вселенной. Эфир отвечает за распространение электромагнитного и гравитационного взаимодействия.

В настоящий момент теория эфира не используется в современной физике, так как после появления теории относительности необходимость в понятии «эфир» просто отпала.

Тем не менее, появляются новые взгляды на концепцию эфира, и полностью списывать ее со счетов не стоит. Многие ученые до сих пор ведут споры о том, существует эфир, или нет, а в физике даже появился новый раздел, изучающий этот вопрос (эфиродинамика).

Никола Тесла своими опытами доказывал существование эфира. У ученого была идея использовать эфир как источник энергии. Так, Тесла хотел отказаться от проводной передачи энергии и передавать электричество по всему миру без проводов посредством эфира. Для этого предполагалось на полюсах Земли установить две гигантские катушки.

К сожалению, выбранное Теслой направление не разрабатывалось на более глубоком уровне. Вдобавок его считали странным ученым, который так и не захотел выйти на путь поиска экономических выгод своих исследований. Кроме этого наступала другая эра – время вакуумных изобретений.

Многие архивы Теслы были утеряны при загадочных обстоятельствах. Даже если Тесла и узнал, как получить практически неиссякаемый источник энергии, то сейчас эта информация недоступна. Редкий гений Теслы опередил свое время, а мир оказался просто не готов к его идеям.

Конфигурации катушки Тесла

Много что можно сделать из катушки Тесла. Достаточно иметь лишь некоторый инженерный опыт или знания в электронике

Трансформатор Тесла имеет много видоизменений, в зависимости от этого используется в разных сферах жизни:

  1. Катушка с роторным механизмом с искрами, вращающимися в разных положениях. Здесь роль двигателя выполняет электрический агрегат с вращающимся диском, проводящим электроды.
  2. Ламповая катушка с обычными лампами для генерации тока высокого напряжения. Они способны проводить напряжение до 600 Вольт.
  3. Полупроводниковый генератор с задающим генератором высокой частоты (более современная конструкция).
  4. Высокочастотный трансформатор, выводящих ток посредством музыкальных волн. Разряд изменяется в зависимости от музыкального ритма.

Достаточно изменить ключ разряда, чтобы изменить его вид и достигнуть тем самым разных форм разряда.

Основное отличие их всех – довольно тихая работа, так как сама искра издает мало шума.

Катушки Тесла используют для получения тока на расстоянии или для беспроводной передачи энергии

В чем уникальность катушки Тесла?

Основное отличие этого изобретения состоит в том, что у его изобретателя получалось при частоте в несколько сот килогерц получить напряжение, превышающее 15 млн вольт. Это устройство смотрится невероятно странно, пугающе, но и в той же мере красиво: отсутствие железного сердечника, толстый наружный слой первичной обмотки и толстый внутренний слой вторичной обмотки. Но есть и недостатки. Например, изготовить большой виток, обеспечивая отличный тепловой контакт с сердечником трансформатора, довольно непросто.

Кстати , если вдруг вам нужно написать любую работу по физике, у нас действуют вкусные скидки

Многие пытаются повторить многочисленные уникальнейшие эксперименты великого гения. Однако для этого им придется решить важнейшую задачу – как сделать катушку Теслы в домашних условиях. Но как это сделать? Попробуем подробно описать так, чтобы у вас это получилось с первого раза.

Как сделать катушку Тесла в домашних условиях своими руками

Если у вас дома есть радиодетали, вы вполне можете повторить создание этого изобретения

В интернете можно найти массу информации о том, как сделать музыкальную или мини катушку Тесла своими руками. Но мы расскажем и наглядно покажем на примере иллюстраций, как сделать простую катушку Тесла на 220 Вольт в домашних условиях.

Так как это изобретение было создано Николой Тесла для экспериментов с высоковольтными зарядами, в нем присутствуют следующие элементы: источник питания, конденсатор, 2 катушки (именно между ними будет циркулировать заряд), 2 электрода (между ними заряд будет проскакивать).

Катушка Тесла применяется в множестве устройств: от телевидения и ускорителя частиц до игрушек для детей

Для начала работ вам понадобятся следующие детали:

  • блок питания от неоновых вывесок (питающий трансформатор);
  • несколько керамических конденсаторов;
  • металлические болты;
  • фен (если нет фена, можно использовать вентилятор);
  • медный провод, покрытый лаком;
  • металлический шар или кольцо;
  • тороидальные формы для катушек (можно заменить цилиндрическими);
  • предохраняющая штанга;
  • дроссели;
  • штырь для заземления.

Создание должно происходить по следующим этапам.

Проектирование

Любая работа должна начинаться с продумывания деталей и хода работы

Для начала стоит определиться с тем, каких размеров должна быть катушка и где она будет располагаться.

Если финансы позволяют, вы можете создать в домашних условиях просто огромнейший генератор. Но вам стоит помнить об одной важной детали: катушка создает множество искровых разрядов, которые сильно разогревают воздух, заставляя его расширяться. В результате образуется гром. В итоге созданное электромагнитное поле в состоянии вывести из строя все электроприборы. Поэтому лучше создавать ее не в квартире, а где-то в более укромном и удаленном уголке (гараж, мастерская и пр.).

Если хотите заранее определить, насколько длинная дуга получится у вашей катушки или силу мощности необходимого блока питания, произведите следующие замеры: расстояние между электродами в сантиметрах разделите на 4,25, полученное число возведите в квадрат. Итоговое число и будет ваша мощность в Ваттах. И наоборот – чтобы выяснить расстояние между электродами, квадратный корень мощности необходимо умножить на 4,25. Для катушки Тесла, которая будет в состоянии сотворить дугу длиной в полтора метра, потребуется 1 246 Вт. А прибор с блоком питания на один киловатт сможет сделать искру длиной в 1,37 метра.

Далее изучаем терминологию. Для создания столь необычного прибора нужно будет разбираться в узкоспециализированных научных терминах и единицах измерения. И чтобы не оплошать и все сделать верно, придется научиться понимать их смысл и значение. Вот некоторая информация, которая поможет:

  1. Что такое электрическая емкость? Это способность накапливать и удерживать электрический заряд определенного напряжения. То, что накапливает электрический заряд, называется конденсатором. Фарад – это единица измерения электрических зарядов (Ф). Он может быть выражен через 1 ампер секунду (Кулон), помноженную на вольт. Обычно емкость измеряют в миллионных и триллионных долях фарада (микро- и пикофарадах).
  2. Что такое самоиндукция?Так называют явление возникновения ЭДС в проводнике при изменении проходящего через него тока. У высоковольтных проводов, по которым течет низкоамперный ток, высокая самоиндукция. Ее единица измерения – генри (Гн), который соответствует цепи, где при изменении тока со скоростью один ампер в секунду создается ЭДС 1 Вольт. Обычно индуктивность измеряется в мили- и микрогенри (тысячной и миллионной части).
  3. Что такое резонансная частота? Так называют частоту, на которой потери на передачу энергии будут минимальными. В катушке Тесла это будет частота минимальных потерь при передаче энергии между первичной и вторичной обмотками. Ее единица измерения – герц (Гц), то есть один цикл в секунду. Обычно резонансная частота измеряется в тысячах Герцах или килогерцах (кГц).
Читайте также:  Вещи дружбы своими руками

Сбор необходимых деталей

Начинаем собирать детали

Выше мы уже писали, какие составляющие вам понадобятся для создания катушки Тесла в домашних условиях. И если вы радиолюбитель, у вас непременно найдется что-нибудь из этого (а то и все).

А вот некоторые особенности необходимых деталей:

  • источник питания должен питать через дроссель накопительный или первичный колебательный контур, состоящий из первичной катушки, первичного конденсатора и разрядника;
  • первичная катушка должна быть расположена около вторичной катушки, являющейся элементом вторичного колебательного контура, но при этом контуры не должны соединяться проводами. Стоит вторичному конденсатору накопить достаточный заряд, как он тут же начнет высвобождать в воздух электрические заряды.

Создание катушки Тесла

  1. Выбираем трансформатор. Именно питающий трансформатор будет решать, какого размера будет ваша катушка. Большая часть таких катушек работает от трансформаторов, способных выдавать ток от 30 до 100 миллиампер при напряжении от пяти до пятнадцати тысяч вольт. Найти нужный трансформатор можно на ближайшем радиорынке, в интернете или же снять с неоновой вывески.
  2. Делаем первичный конденсатор. Его можно собрать из нескольких более мелких конденсаторов, соединив их в цепи. Тогда они смогут накапливать равные доли заряда в первичном контуре. Правда, нужно, чтобы все мелкие конденсаторы имели одинаковую емкость. Каждый из таких мелких конденсаторов будет называться составным.

Приобрести конденсатор небольшой емкости можно на радиорынке, в интернете или же снять со старого телевизора керамические конденсаторы. Впрочем, если у вас золотые руки, можете и самостоятельно сделать их из алюминиевой фольги с помощью полиэтиленовой пленки.

Для достижения максимальной мощности необходимо, чтобы первичный конденсатор полностью заряжался каждые пол цикла подачи энергии. Для источника питания в 60 Гц нужно, чтобы заряд происходил 120 раз в секунду.

  1. Проектируем разрядник. Чтобы сделать одиночный разрядник, используйте минимум шестимиллиметровый (в толщину) провод. Тогда электроды смогут выдерживать тепло, которое выделяется во время заряда. Кроме того можно сделать многоэлектродный или роторный разрядник, а также осуществлять охлаждение электродов путем воздушного обдува. Для этих целей прекрасно подойдет старый домашний пылесос.
  2. Делаем обмотку первичной катушки. Саму катушку делаем из проволоки, но понадобится форма, вокруг которой придется делать намотку проволоки. Для этих целей используется медная лакированная проволока, купить которую можно в магазине радиоэлектроники или просто снять с любого старого ненужного электроприбора. Форма, вокруг которой будем наматывать проволоку, должна быть конической или цилиндрической формы (пластиковая или картонная трубка, старый абажур и т.д.). Благодаря длине проволоки можно регулировать индуктивность первичной катушки. Последняя должна иметь низкую индуктивность, поэтому в ней должно быть небольшое количество витков. Проволока для первичной катушки не обязательно должна быть сплошной – можно скрепить несколько, чтобы по ходу сборки регулировать индуктивность.
  3. Собираем в одну цепь первичный конденсатор, разрядник и первичную катушку. Данная цепь будет образовывать первичный колебательный контур.
  4. Делаем вторичную катушку индуктивности. Здесь нам также понадобится цилиндрическая форма, куда нужно наматывать проволоку. У этой катушки должна быть та же резонансная частота, что и у первичной, иначе не избежать потерь. Вторичная катушка должна быть выше первичной, потому что у нее будет больше индуктивность и она будет препятствовать разряду вторичного контура (именно он может привести к сгоранию первичной катушки). При нехватке материалов для создания большой вторичной катушки можно сделать разрядный электрод. Это защитит первичный контур, но заставит этот электрод принимать на себя большинство разрядов, в результате чего разряды не будут видны.
  5. Создаем вторичный конденсатор, или терминал. Он должен иметь скругленную форму. Обычно это тор (бубликообразное кольцо) или сфера.
  6. Соединяем вторичный конденсатор и вторичную катушку. Это и будет вторичный колебательный контур, который должен быть заземлен подальше от домашней проводки, которая питает источник катушки Тесла. Для чего это нужно? Так получится избежать блуждания высоковольтных токов по проводке дома и последующего вреда любым подключенным электроприборам. Для отдельного заземления достаточно будет просто вогнать в землю металлический штырь.
  7. Делаем импульсные дроссели. Сделать такую небольшую катушку, способную предотвратить поломку источника питания разрядником, можно, если намотать вокруг тонкой трубки медную проволоку.
  8. Собираем все детали в единое целое. Первичный и вторичный колебательные контуры размещаем рядом, через дроссели присоединяем к первичному контуру питающий трансформатор. Вот и все! Чтобы воспользоваться катушкой Тесла по назначению, достаточно включить трансформатор!

Если у первичной катушки слишком большой диаметр, можно разместить вторичную катушку внутри первичной.

А вот вся последовательность сбора катушки Тесла в картинках:

Выбор трансформатора

Создание первичного конденсатора

Проектировка разрядника

Создание обмотки первичной катушки

Сбор первичного конденсатора, разрядника и первичной катушки в одну цепь

Создание вторичной катушки индуктивности

Создание вторичного конденсатора

Соединение вторичного конденсатора и вторичной катушки

Создание импульсных дросселей

Сбор всех компонентов вместе

Рекомендации

Совет 1: если вы хотите управлять направлением разрядов, которые выходят из вторичного конденсатора, поместите рядом любой металлический предмет таким образом, чтобы между обоими не было контакта. В этом случае контакт будет принимать форму дуги, тянущейся от конденсатора к предмету. Интересно, что если рядом поместить люминесцентную лампу или лампочку накаливания, то благодаря катушке Тесла они начнут светиться.

Совет 2: если хотите спроектировать и создать качественную катушку, необходимо произвести сложные математические расчеты. Впрочем, если вы сами не можете их выполнить, ищите помощников или формулы из интернета.

Совет 3: не стоит приступать к созданию катушки Тесла, если у вас нет соответствующего инженерного опыта или познаний в электронике.

Совет 4: неоновые вывески последнего поколения содержат полупроводниковые источники питания со встроенным устройством защитного отключения. Это делает их непригодными для создания катушки Тесла!

Мир физики и электроники таит в себе множество тайн и красоту, которую при должном опыте и знаниях может воссоздать каждый своими руками. Так и вы, следуя всем перечисленным советам, всегда сможете собственноручно создать легендарную катушку Тесла дома, поражая гостей и соблазняя противоположный пол. А если гениальный ум и жажда изобретений мешают вам учиться, просто воспользуйтесь услугами сервисов для студентов!

Наталья – контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нейрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Источник

Оцените статью