Искровые генераторы своими руками

Генератор высокого напряжения своими руками

Привет всем любителям самоделок. В этой статье я расскажу, как сделать генератор высокого напряжения своими руками, применение которого достаточно широкое, его можно будет использовать в качестве питания газоразрядных ламп, озонатора для травления крыс. Также он идеально подойдет для создания шокера или же электроподжига газа. Думаю многим стало интересно как это собрать, поэтому не затягиваем и переходим к сборке, самое же устройство основано на блокинг-генераторе.

Но перед прочтением подробной сборки предлагаю посмотреть видео, где можно наглядно увидеть принцип действия самоделки и понять, а надо ли оно мне.

Для того, чтобы сделать своими руками генератор высокого напряжения, понадобится:
* Транзистор IRF3205 с радиатором
* Аккумулятор типа 18650
* Умножитель
* Резистор на 100 Ом
* Паяльник, припой, флюс
* Строчный трансформатор ТВС-110ПЦ15
* Обмоточный провод, диаметр 1 мм и длиной 1 м
* Канцелярский нож или скальпель
* Провода

Вот и все, что нужно для изготовления данной самоделки, думаю не так и сложно все это найти, учитывая, что почти все детали были взяты из старого телевизора.

Шаг первый.
Данный трансформатор работает по принципиальной схеме, которая достаточна легка в повторении любому начинающему в этом деле.

Источник

Как построить машину Уимшерста на 30 киловольт

Электрофорная машина, генератор Уимсхёрста — электростатический генератор, то есть электрическая машина для генерирования высокого напряжения, разработанная британским изобретателем Джеймсом Уимсхёрстом. Использует явление электростатической индукции, при этом на полюсах машины (лейденских банках) накапливаются электрические заряды, разность потенциалов на разрядниках достигает нескольких сотен тысяч вольт. Работает с помощью механической энергии.

Электростатические машины создают заряды высокого напряжения без привычных катушек из медной проволоки, постоянных магнитов и коммутаторов, которые есть в обычных генераторах. Они сделаны из латуни, стекла и дерева и выглядят скорее механическими, чем электрическими.

Самое интересное в этих генераторах — это то, что вы можете почувствовать их работу. Когда вы запускаете машину Wimshurst, вы можете слышать, как она потрескивает от энергии, вы чувствуете резкий запах озона и чувствуете, как волосы на руках встают дыбом, когда лейденские банки начинают заряжаться.

Джеймс Вимшерст изобрел машину Вимшерста в конце 1800-х годов. Это «простой» генератор высокого напряжения, который можно использовать в экспериментах. Он вытеснил другие устройства, такие как машины «Holtz» и «Voss». Это был один из первых способов генерировать высокое напряжение, позволяющее более или менее удобно делать рентгеновские снимки на рубеже веков. Машина Вимшерста была заменена примерно в 1924 году более практичными генераторами, такими как генератор Маркса, который до сих пор используется в лазерных принтерах и телевидении с ЭЛТ.

Машина Вимшерста состоит из двух дисков, вращающихся в противоположных направлениях, и двух лейденских банок (конденсаторов). Чаще всего он приводится в действие рукояткой, но также может приводиться в действие электродвигателем.
В этой статье мастер покажет, как он спроектировал и построил машину Вимшерста с нуля.

Конкретно это устройство генерирует 30 000 вольт (рассчитано с использованием максимального расстояния между искровыми промежутками) и несколько десятков микроампер.

Работает устройство следующим образом.

Начало: зарядка секторов
Машина состоит из двух диэлектрических дисков. Каждый диск разделен на сектора. Сектора металлизированы. Диски приводятся во встречное вращение с равной угловой скоростью. Работа начинается с любого сектора, который имеет заряд, то есть у них несбалансированное количество положительного или отрицательного заряда. Допустим, что сектор на передней стороне есть чистый отрицательный заряд.
Этот отрицательный сектор влияет на сектор, к которому он обращен на противоположном(заднем) диске, отталкивая отрицательный заряд к дальней стороне заднего сектора (поскольку одинаковые заряды отталкиваются) и оставляя ближнюю сторону с положительным зарядом (поскольку разные заряды притягиваются). Этот процесс называется электростатической индукцией. Машину Вимшерста называют «машиной влияния», поскольку заряд в одном секторе влияет на распределение заряда в другом секторе. Несмотря на то, что распределение заряда в заднем секторе находится под влиянием, он все еще имеет отрицательный заряд.



Нейтрализующий заряд
Рис.4. показывает, что происходит рядом с задним диском, на который только что воздействовали. На каждом диске имеется нейтрализующий стержень. На каждом конце полосы нейтрализации есть проводник (щетка), который касается секторов по мере их прохождения. Количество секторов четное и стержень касаясь одного сектора, касается противоположного сектора. Таким образом противоположный сектор тоже получает отрицательный заряд.

На следующем рисунке представлена ситуация сразу после нейтрализации поверхностного заряда на обоих секторах после того, как диски немного повернуты в сторону от щеток. Первый сектор остается с положительным зарядом, поскольку отрицательный заряд только что был снят с него нейтрализующей полосой. Второй сектор только что получил отрицательный заряд от нейтрализующей планки, поэтому он остается заряженным отрицательно.

Теперь у нас есть 3 заряженных сектора: исходный, с которого началась последовательность событий, первый заряженный сектор и второй заряженный сектор. Затем процесс повторяется на следующих секторах.

Накопление заряда
Если посмотреть внимательно, все отрицательно заряженные сектора направляются к левому коллектору, а все положительно заряженные сектора направляются к правому коллектору. Также можно заметить, что секторы, которые только что прошли через любой из коллекторов заряда, получили свой заряд и теперь в целом нейтральны. Так продолжается до тех пор, пока он не достигнет нейтрализующих щеток, где воздействующее и нейтрализующее действие перезарядит их.

Сбор заряда
Электроды физически не касаются секторов. Вместо этого они имеют острые края, обращенные к секторам, и между ними есть воздушный зазор. В качестве примера рассмотрим один из коллекторов Отрицательный заряд на секторах отталкивает электроны от острия, оставляя положительный заряд. Электрический заряд имеет тенденцию накапливаться вокруг острых предметов. Сложенный положительный заряд приводит к возникновению сильного электрического поля в зазоре между заряженными секторами и коллекторными гребешками. Это сильное электрическое поле ионизирует молекулы воздуха и делает их проводящими, образуя синевато-пурпурную корону возле острия. Этот проводящий воздух значительно снижает сопротивление, которое обычно имеет воздух. Это приводит к тому, что отрицательный заряд на секторах перескакивает через зазор к коллектору, что снова оставляет сектора нейтральными.
Тот же процесс происходит на правом коллекторе, только с противоположными зарядами.

Читайте также:  Гирлянда с фотками своими руками

Лейденские банки и искровой разряд
Остальная часть схемы состоит из разрядника и двух лейденских банок, которые представляют собой два цилиндрических конденсатора, соединенных последовательно. Искровой разрядник также представляет собой конденсатор, хотя и гораздо меньшего размера, чем у лейденских банок. Он также имеет диэлектрик (воздух). Искровой разрядник и цепь лейденских банок параллельны коллекторам. Шунт часто используется для простого подключения и отключения лейденских банок.

Заряд, собранный с секторов, заряжает лейденские банки и далее переходит на искровой разрядник.





Шаг второй: диски
Первоначально мастер использовал два желтых акриловых листа, которые были вырезаны на лазерном резаке. К сожалению, он упустил из виду тот факт, что нужно сделать отверстие по центру. При попытке сделать отверстия они не получились соосно.
Тогда он сделал два диска из оранжевого акрила.

Диски имеют диаметр 290 мм. Пять отверстий в центре предназначены для крепления подшипника. На каждом диске крепится 24 сектора из вырезанные из алюминиевой фольги.


























Коллекторы заряда (гребни), сделаны из медной проволоки. Проволока сгибается буквой U. К прямым участкам припаиваются по 12 медных перемычек. Затем перемычки обрезаются немного отступив от края.

Гребешки крепятся так, чтобы острые штырьки располагались напротив секторов. Гребешки в свою очередь соединяются с медной проволокой, закрепленной на шпильках лейденских банок.




Лейденские банки представляют собой два слоя алюминиевой фольги обернутые вокруг секции от люминесцентной лампы (стеклянная колба или трубка). Один слой изнутри, второй снаружи. По сути это конденсатор. Для устройства нужны две Лейденские банки. Одна у него получилась емкостью 0,83 нФ, а вторая 0,76 нФ.

Наружные фольга банок соединяется медным шунтом.



Шаг восьмой: устранение неполадок
Изначально машина выдавала максимум 200В. Внимательно рассмотрев устройство, он понял, что частично утечка была через металлический вал, на котором были установлены диски. Оси касались бронзовые стержни. Сначала он заизолировал стержни, затем заменил ост на диэлектрическую.

Вторым фактором, влияющим на напряжение было количество гребешков. Он удалил их все, кроме одного.
Имея только по одному гребешку с каждой стороны токосъемника, площадь будет минимальной, а напряжение — максимальным.

Источник

Искровой генератор своими руками

www.softelectro.ru &nbsp &nbsp &nbsp &nbsp
2009 &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp
Яшкардин Владимир &nbsp &nbsp
info@softelectro.ru &nbsp &nbsp &nbsp &nbsp

Видео работы станка &nbsp Скачать &nbsp Объем: 9 276 kb

Предисловие автора.

Данная статья написана исключительно для описания электроэрозионного метода обработки металлов.
Описание конструкции в целом и любой его части не может быть пособием по созданию электроэрозионного станка.
Электрическая схема и устройства станка нарушает все правила электробезопасности и представляет реальную угрозу вашей жизни, электросети и оборудованию.
Автор не несет никакой ответственности за ущерб нанесенный Вашему здоровью и имуществу если Вы попытаетесь реализовать описанную здесь конструкцию.
Любая часть этой статьи не может быть напечатана или передаваться кому- бы то ни было без этого предупреждения.
Автор сделал этот станок для одной конкретной задачи при ограничении времени и деталей.
После решения этой задачи станок был разобран, так как он абсолютно не безопасен.

§1 Вступление.

Создать этот станок меня заставила проблема с удалением обломанной высокоуглеродистой биты в картере заднего моста моей машины.
Отвинчивая крышку редуктора заднего моста, я оборвал головку болта М8.
В отсутствии экстрактора попытался использовать углеродистую биту в виде звездочки, которую забил в отверстие просверленное в остатке болта.
При попытки открутить остатки болта бита обломилась. Высверлить обломок биты твердосплавными сверлами не удавалось.
Пришлось подумать, как это сделать, не снимая моста.

§2 Электроэрозия.

Принцип электроэрозионной обработки металлов основан на испарении металла искровым разрядом.
Если Вы видели короткое замыкание конденсатора на металлической пластине, то помните, что в месте разряда остаётся лунка.
Металл в этом месте испаряется от высокой температуры искрового разряда.
Электроэрозионные станки более 50 лет применяются в промышленности для обработки высокопрочных сплавов.

§3 Искровой генератор.

Главное в станке это искровой генератор, а точнее конденсатор (накопитель энергии).
Нам необходимо накопить электрическую энергию за длительный интервал времени, а потом выбросить всю накопленную энергию за очень короткий промежуток времени.
По аналогичному принципу работают лазеры, чем короче будет промежуток времени выброса энергии,
тем выше будет плотность тока в искровом канале, следовательно – будет выше температура.

Рис1.Принципиальная схема искрового генератора.

Работа искрового генератора:
С помощью диодного моста выпрямляем промышленное напряжение 220 в.
Лампа Н1 служит для ограничения тока короткого замыкания и защиты диодного моста.
Вместо лампы можно использовать другую нагрузку. Чем больше нагрузка (Вт), тем быстрее зарядятся конденсаторы.
Но, помните, что ток не должен превысить возможности диодного моста и подводящих проводов.
После того, как конденсаторы зарядятся лампа Н1 погаснет, и можно подносить электрод к обрабатываемой детали.
В момент касания электрода о деталь проскочит искра, в результате чего конденсаторы разрядятся и лампа Н1 загорится.
После размыкания электрода конденсаторы вновь начнут заряжаться.
Время заряда конденсаторов в этой схеме 0,5..1,0 сек.
Постоянный ток в схеме при замкнутом электроде составляет примерно 0,45А, но в момент разряда он достигает нескольких тысяч ампер.
Поэтому провода от конденсаторов к электродам должны быть толстыми (6 ..10 мм2) и обязательно медными.
Поднося каждую секунду электрод к детали вы получите искровой генератор с частотой генерации в 1Гц.

§4 Особенности работы с искровым генератором.

Обрабатываемая деталь должна быть токопроводящая, т.е. это должен быть металл или сплав металлов.
Прочность сплавов значения не имеет.
Электрод должен быть медным или латунным.
Отверстие, получаемое в детали, будет повторять форму электрода.
Если электрод будет треугольным, то и отверстие в детали будет треугольное.
При работе электрод будет укорачиваться за счет испарения примерно с той же скоростью, с какой будет углубляться отверстие.
Скорость углубления для этой схемы составляет примерно 0,025мм за удар.
То есть, за 40 ударов глубина отверстия будет около 1мм (для диаметра отверстия 2..3мм).
При увеличении диаметра отверстия скорость углубления будет уменьшаться.
После каждого удара образовавшееся отверстие будет покрываться изнутри окислами металлов и постепенно искра начнёт уменьшаться, пока совсем не прекратиться.
Поэтому второй частью станка должна быть система удаления окислов.
Для этого необходимо подавать в отверстие керосин или масло.
Удаления окислов происходит за счет взрыва капли масла в искровой дуге.
Масло испаряется за счет высокой температуры и вступает в реакцию с кислородом, который находится в воздухе,
в результате чего в отверстии происходить щелчок (взрыв) который выбрасывает окислы металла наружу.
Я использовал баллончик с силиконовой смазкой.
Достаточно после каждого третьего щелчка брызгать в отверстие силиконовую смазку и искра не будет пропадать.
Только будьте внимательны, если налить много силикона он может загореться.
Подачу электрода нужно обязательно фиксировать направляющей, так чтобы он бил всё время в одну точку и двигался параллельно оси отверстия.

Читайте также:  Как сделать заглушку для трубы своими руками

§5 Реализация станка.

Детали для искрового генератора не дефицитны, их можно купить в специализированном магазине или взять на ближайшей помойке.
Конденсаторы Вы найдете в любом выброшенном телевизоре или мониторе или в блоке питания от компьютера.
Там же найдете и диодный мост.
Напряжения указанное на конденсаторе должно быть не менее 320 В.
Емкость конденсатора может быть любой, сумма всех ёмкостей конденсаторов должна быть не менее 1000 мкФ (все конденсаторы соединяются параллельно).
Чем больше будет ёмкость, тем мощнее будет удар.
Все это надо собрать в прочном изоляционном корпусе.
Как я уже говорил для монтажа надо использовать толстые медные провода (6..10мм2), которые должны идти от конденсаторов к электродам.
Провода от конденсаторов к диодным мостам и к лампе могут быть 0,5мм2.
Лампу установить в фарфоровый патрон и прочно закрепите его на подставке, чтобы лампа не упала и не разбилась,
желательно здесь же установить автомат защиты на 2..6 А. с его помощью можно будет включать схему.
Для электродов нужно сделать надежные зажимы.
Для минусового провода большой крокодил или винтовой зажим.
На плюсовом проводе надо сделать зажим для медного электрода и штатив с направляющей для электрода.

Рис.2 Устройство станка

  • электрод;
  • винт зажима электрода;
  • винт зажима плюсового провода;
  • направляющая втулка;
  • фторопластовый корпус;
  • отверстие для подачи масла;
  • штатив;
  • Корпус 6 вытачивается из фторопласта. В качестве направляющей втулки 4 для электрода 1 использован заземляющий штырь 3-х фазной евророзетки.
    Он был просверлен вдоль оси для установки в него электрода и сделано два отверстия с резьбой для закрепления электрода и провода.
    По мере испарения электрода его подают вперед, ослабив винт 2.
    Вся конструкция крепится на надёжный штатив, который позволяет менять высоту.
    В отверстие 6 вставляется трубочка с маслом.
    Направляющая втулка 4 как шприц подает масло вдоль электрода.

    Рис.3 Фотография станка

    Для привода электрода был использован отечественный пускатель с катушкой на 220в, шток которого имеет ход 10 мм (он определяет максимальную глубину отверстия).
    Обмотка пускателя подключается параллельно лампе Н1, поэтому пока конденсаторы заряжаются (лампа горит) шток пускателя втянут.
    После зарядки конденсаторов лампа гаснет, так как ток в системе перестает течь и шток отпускается.
    При отпускании штока он касается детали, происходит искровой разряд, лампа Н1 загорается и шток снова втягивается. Цикл повторяется снова, с частотой примерно 1Гц.
    Если надо увеличить частоту, то нужно увеличить мощность лампы Н1.
    В качестве детали на фотографии использован напильник.

    Рис.4 Фотографии сверла с отверстием, проделанным этим станком.

    §6 Меры безопасности при работе.

      При работе со станком нужно учесть:
  • Во первых, из-за отсутствия нужного трансформатора схема искрового генератора была сделана без гальванической развязки с промышленной сетью 220в.
    Если деталь окажется, каким-то образом заземлена, то это приведет к короткому замыканию сети.
  • Во-вторых, из-за отсутствия нужного трансформатора используется опасное для жизни человека напряжение. Удар искровым разрядом в 220в 1000 мкФ будет летален.
  • В-третьих, к детали не должны быть подключены электронные приборы даже через корпус. Например, если полностью не снять электронные блоки с машины и не отсоединить аккумулятор, то можно легко вывести их из строя.
  • В-четвертых, керосин или масло подаваемые в отверстие могут легко загореться, что приведет к пожару.
  • Поэтому я настоятельно не рекомендую повторять эту конструкцию.

      Минимум что в ней надо теоретически изменить:

  • Поставить развязывающий трансформатор 220в/12в Р=200 ВА
  • Лампу Н1 12в 120Вт
  • Увеличит емкость батареи до 20 000 мкФ ( можно испол. конденсаторы на 35В)
  • Причем разработать и изготавливать конструкцию должен специалист , аттестованный на такие работы.

    Если же вам необходимо изготовление деталей в промышленном масштабе, рекомендую использовать профессиональное оборудование:
    Электроэрозионные станки
    Супердрели для отверстий
    Проволочно-вырезные станки
    Копировально-прошивные станки
    Назад &nbsp Главная &nbsp

    Батраков Евгений
    E-mail captain_billy (at) mailru.com
    http://radiolub.chat.ru/Monstr/monstr.htm

    Я как любитель всяких импульсных и особенно высоковольтных устройств решил сделать высоковольтный генератор (идея вообще-то была сделать люстру Чижевского). Подошел я к этому весьма творчески. Т.е. как всегда чужую готовую схему повторять неинтересно – надо что-то сочинить свое. Сначала я правда перепробовал кучу схем. На транзисторах делал – мне что-то не понравилось, да и транзисторы грелись сильно. Сделал обычную схему на тиристорах – трансформатор сильно трещит (можно его конечно залить эпоксидкой, но возиться не хотелось). Частота низкая импульсы короткие. Да и напряжения высокого какого хотел (а хотелось по больше) я не получил. И я решил пойти другим путем – чтобы треск или свист не был слышен, я решил поднять частоту за пределы слышимости, т.е. килогерц 20-30 и при этом сделать генератор на тиристоре. У меня для этого было несколько высокочастотных тиристоров ТЧ63. Мощная штука – частота до 33кГц, ток постоянный 63А, а импульсный ток килоампера полтора, т.е. для импульсных устройств подходит идеально.

    Попробовал я сначала вот эту схему (с этим тиристором):

    Но почему-то я не смог выжать с однопереходного транзистора больше 10 кГц, ну а свист – кому понравится. Хотя в принципе схема не плохая. Хотя недостаток был еще один – резистор R3 греется очень сильно, причем мне пришлось ставить два проволочных остеклованных по 7 Ватт каждый, и все равно нагрев чрезмерно большой. Меня это не устроило. Хотя на выходе получил достаточно большое напряжение – пробивало зазор в несколько миллиметров. К сожалению напряжение померить было нечем – проверял на глазок по ширине пробивного зазора. В разной литературе указывается по разному, но в большинстве принято считать для переменного напряжения примерно 1 мм на 1 кВ, а для постоянного 1 мм на 3 кВ. Хотя это зависит от частоты (для переменного тока) и от влажности и давления. У меня ширина пробоя оказалась миллиметров 10-12 для переменного тока (почему-то при попытке выпрямить или пропустить через умножитель напряжение падало настолько сильно, что зазор уменьшался почти до нуля). Меня все это совершенно не устроило. Вот тут я и ступил на путь создания «высоковольтного монстра».

    Читайте также:  Дымогенератор своими руками чертежи без компрессора

    Во-первых я собрал задающий генератор по стандартной, годами проверенной схеме. На двух транзисторах разной проводимости. Это позволило без труда сделать генератор коротких импульсов с частотой изменяемой в широких пределах от 1 кГц до 50-70 кГц. Трансформатор на ферритовом колечке диаметром 10-12 мм.

    Затем порывшись в груде книг и учебников я выбрал другое включение конденсатора-тиристора-трансформатора (именно так кстати делается в электронных тиристорных схемах зажигания) ее преимущество в том, что этот вариант включения практически не боится короткого замыкания на выходе:

    И самое главное вместо так непонравившегося мне греющегося резистора я поставил дроссель Др1 (кстати пусковой дроссель от лампы дневного света). Дроссели Др2 и Др3 в принципе защитные (по 16 витков на феррите), но можно их наверное не ставить (хотя Др3 – влияет на резонанс).

    Когда я все это включил, то начал с минимальной частоты и напряжения питания вольт 30-50. Сначала я услышал писк и на выходе пробивало зазор в пару миллиметров. Затем я стал повышать частоту и при приближении к 18-20 кГц писк не стал слышен. А вот дальше произошло самое интересное. В какой-то момент система попала в резонанс. Я услышал мощное шипение, и между выходными проводами образовалась дуга длиной миллиметров в 45, причем это было не просто потрескивание с синей искрой – это была дуга с высокой энергией ярко сиреневого цвета – такой плазменный жгут или шнур. И это все при напряжении питания в 60 вольт (если честно, я больше 80 В дать просто побоялся). Я решил проверить как обычно на пробой плотного листа бумаги (с предыдущими схемами я баловался – симпатичные такие дырочки получались). Сказать, что ее пробило – это ничего не сказать – бумага вспыхнула сразу при касании к дуге. Т.е. энергия была очень высокой. Если я концы провода подносил ближе друг к другу – они на концах начинали плавиться (тут мне и пришла мысль, что сварочник надо делать именно на тиристорах и где-то на этой же частоте). Пробивался даже фторопласт. Причем в этой схеме я использовал строчный трансформатор от цветного лампового усилителя, а выходная обмотка там имеет мало витков и при обычно схеме на выходе получалось небольшое напряжение (у ч/б телевизоров строчник с более большим коэффициентом трансформации). Я подумал, а что если напряжение питания поднять до 220В – сколько будет тогда на выходе (хотя скорее всего пробило бы трансформатор).

    Когда улеглись первые восторги, я начал замечать и недостатки это конструкции. Во-первых, через пару минут работы (а то и меньше) начинал разогреваться трансформатор (и довольно сильно) затем тиристор и даже диод (мощность-то прокачивалась ого-го). Во-вторых система оказалась очень чувствительна к изменениям частоты генератора (все-таки схема-то резонансная). Так же на резонанс влияло и изменение нагрузки. Но что хуже всего – при такой высокой частоте колебаний – я нигде не смог это применить. Выпрямить невозможно – пробовал ставить на выходе высоковольтные (12 кВ, 300 мА, исправные) диоды – они начинали нагреваться даже, если припаяны одним концом, а второй просто висит в воздухе (в пространство что ли излучают). Даже при подключении высоковольтного кабеля длиной всего сантиметров 20 – напряжение падало в десятки раз (может резонанс сбивается и регулировка частоты не помогает). Пробовал собрать умножитель на выходе – с тем же результатом.

    Где применить такое я не знаю. Думал даже электрошокер сделать, но схема у меня работала вольт от 16-20 не меньше, да и мощность потребляла большую и размеры были приличные (тиристор довольно внушительных размеров, дроссель, мощный конденсатор, строчный трансформатор – это будет не миниатюрное устройство, а «ранцевый» вариант, если учесть, что батареек надо к нему штук 16), к тому же в шокере на выходе должно быть постоянное напряжение (а если все-таки переменка, то на маленькую частоту). Да и вообще я такое побоюсь применить – убьет еще кого ненароком или пробьет изоляцию и мне достанется. Короче забросил я этого монстра. Хотя идея была красивая.

    Самоделки из двигателя от стиральной машины:

    1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
    2. Самодельный наждак из двигателя стиральной машинки
    3. Самодельный генератор из двигателя от стиральной машины
    4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
    5. Гончарный круг из стиральной машины
    6. Токарный станок из стиральной машины автомат
    7. Дровокол с двигателем от стиральной машины
    8. Самодельная бетономешалка

    Простой высоковольтный генератор на IR2153,

    строчном трансформаторе и умножителе своими руками (схема, видео, PReva)

    Автор: PReva

    Для получения высокого напряжения я использовал полумост на ir2153, немного усовершенствовал строчник ТВС-110ПЦ15 (добавив дополнительную обмотку) и подключил умножитель напряжения УН 9 – 18.

    Схема высоковольтного генератора

    Подробнее о высоковольном генераторе в видео:

    EuroSamodelki.ru – это огромное количество самоделок, которые сопровождаются подробными иллюстрированными инструкциями для самостоятельного изготовления. В нашем каталоге насчитывается уже более 2500 самоделок. Присоединяйтесь к нам, вступайте в нашу социальную группу ВКонтакте. Мы Вас ждем! Сделайте что-нибудь полезное для себя, для своего дома, для своих близких.

    Делайте самоделки своими руками как мы, делайте лучше нас!

    Источник

    Оцените статью