- Шаровая молния — сделай сам
- 51 Прирученная молния прямо в комнате – и безопасно!
- Читайте также
- ОТВЕТ НА ПРЯМО ЗАДАННЫЙ ВОПРОС
- 1. Молния и электрическая искра
- 2. Отчего происходит молния?
- 3. Как развивается молния?
- 5. Шаровая молния
- 1. Как часто возникает молния?
- 2. Куда ударяет молния?
- Рубиновая молния
- Сколько весит воздух в комнате?
- Маленькая молния
- LiveInternetLiveInternet
- —Метки
- —Рубрики
- —Музыка
- —Поиск по дневнику
- —Подписка по e-mail
- —Статистика
- ШАРОВЫЕ МОЛНИИ СВОИМИ РУКАМИ Антон Егоров * ЧТО ТАКОЕ ШАРОВАЯ МОЛНИЯ Юрий К.
Шаровая молния — сделай сам
Лабораторные опыты с атмосферным электричеством позволяют узнать много, но загадки все ещё остаются.
Плазменная лампа Николы Теслы не может считаться моделью шаровой молнии, хотя изобретателем наверняка двигал интерес к этому странному атмосферному явлению.
Оказалось, что холодная плазма в разреженной среде при наличии быстропеременного электрического поля имеет к нему мало отношения.
В Петербургском институте ядерной физики уже несколько лет существует мастерская шаровых молний. Тут была придумана и создана небольшая установка, с достаточной точностью воспроизводящая природный процесс рождения молний на влажной поверхности: тут есть медный ввод, играющий роль громоотвода, кварцевая трубочка с электродом, открытая поверхность водопроводной воды.
В роли громового облака выступает батарея конденсаторов на 600 мкФ, которую можно заряжать до 5,5 кВ. Это серьезное напряжение — малейшая неосторожность при работе с ним грозит смертельной опасностью.
Она была подробно описана в институтском препринте от 24 марта 2004 года. Вода в полиэтиленовой чашке должна быть заземлена, для этого на дно положен медный кольцевой электрод. Он соединен изолированной медной шиной с землей. Положительный полюс конденсаторной батареи тоже заземлен.
От медного ввода хорошо изолированная шина ведёт к центральному электроду. Это цилиндрик из железа, алюминия или меди, диаметром 5–6 мм, который плотно окружен трубочкой из кварцевого стекла. Она возвышается над поверхностью воды на 2–3 мм, сам электрод опущен вниз на 3–4 мм. Образуется цилиндрическая ямка, куда можно капнуть каплю воды. Конец медного провода от отрицательного полюса конденсаторной батареи нужно закрепить на длинной эбонитовой ручке.
Если быстро коснуться этим разрядником медного ввода, то из центрального электрода с хлопком вылетит плазменная струя, от которой отделится и поплывет в воздухе шаровой плазмоид. Цвет его будет разным: с железного электрода сорвется яркий белёсый плазмоид, с медного — зеленый, а с алюминиевого электрода — белый с красноватым отливом: такие плазмоиды видят летчики, когда в самолет ударяет молния. Чтобы получить настоящую шаровую молнию, нужно вставить в кварцевую трубку цилиндрик из пористого угля. Такие угли используют при дуговом спектральном анализе. Пористый уголь можно пропитать разными растворами и суспензиями.
Если нанести на электрод водную вытяжку из почвы, с органикой, частичками угля и глины, то при разряде из электрода вылетит классическая шаровая молния «апельсинового» цвета. Правда, проживет она не дольше секунды, но этого достаточно, чтобы рассмотреть её во всех деталях и полюбоваться ею.
Получение настоящих шаровых молний — дело нетрудное. Нужна линейная молния, бьющая в некое подобие громоотвода, и сырой воздух. Для того, чтобы изучать свойства шаровых молний, нам приходилось изготавливать их тысячами.
Прежде всего, электрические измерения показали, что шаровая молния — это, действительно, автономное образование: ток в разрядном контуре исчезает через десятую долю секунды, потом молния свободно движется и светится за счет аккумулированной энергии.
Молния, кстати, не намного горячее огурца на грядке. Этот парадокс связан с особым состоянием ионов в керне шаровой молнии. Каждый возникший при разряде ион сразу гидратируется — во влажном воздухе его плотно окружают молекулы воды. Разноименные ионы притягиваются друг к другу, но молекулы воды мешают им сблизиться. Возникает особое состояние вещества — гидратированные кластеры.
Компьютерное моделирование показало, что в гидратированной плазме скорость рекомбинации ионов резко замедляется. Если в «сухой» плазме она происходит за миллиардную долю секунды, то у ионов, законсервированных в кластере, рекомбинация затягивается на десятки и сотни секунд. В течение этого времени молния будет светиться.
В керне шаровой молнии гидратированные кластеры с большим дипольным моментом образуют цепочечные и фрактальные структуры. Клуб теплого, влажного воздуха может аккумулировать громадную энергию, до килоджоуля на литр, если получит её при разряде в виде разобщенных ионов разного знака.
Таким образом, загадку шаровых молний можно считать разгаданной. А ведь ещё совсем недавно она занимала свое место среди загадок природы, обсуждаемых на телевидении и в печати, где-то рядом с НЛО, Тунгусским метеоритом и Бермудским треугольником.
И это неудивительно. Миф о шаровой молнии кормит уже не одно поколение журналистов и ученых.
В погоне за сенсацией в сообщения о шаровой молнии вводились красочные подробности. Бесхитростный рассказ фермера: «Раздался сильный удар грома. По водосточной трубе сбежал огненный комок, размером с кулак, и нырнул в бочку с водой. Вода булькнула. Я подошел и сунул руку в воду. Вода, вроде, стала теплее…», — после четырех последовательных перепечаток в газетах превратился в научный труд по вычислению запаса энергии в объеме размером с кулак, способном испарить объем воды размером с бочку.
Источник
51 Прирученная молния прямо в комнате – и безопасно!
Прирученная молния прямо в комнате – и безопасно!
Для опыта нам потребуются: два воздушных шарика.
Все видели молнию.
Страшный электрический разряд бьет прямо из тучи, сжигая все, во что попадает. Зрелище это и страшно, и притягивает. Молния опасна, она убивает все живое. Мы уже проделывали опыт с шариком и волосами и поэтому можем понять, почему она возникает.
Облака как бы «трутся» друг о друга и выбивают друг из друга электроны, совсем как волосы из шарика. Только сила заряда, которую они приобретают, колоссальна. Когда заряда накапливается слишком много, он «вытекает» и устремляется в ближайший предмет, в землю, в одиноко стоящее высокое дерево, в пруд, в дом.
Пользуясь этим знанием, мы можем создать маленькую и безопасную, прирученную молнию прямо в доме. Поверьте, это совершенно безопасно.
Итак, если мы хотим увидеть молнию прямо своими глазами, то надо проделать следующее. В полной темноте потереть отдельно два шарика о волосы, а потом поднести друг к другу. Между ними проскочит синяя искра с треском! Между прочим, напряжение в этой искре огромное, может быть, десятки тысяч вольт. Я не шучу. Просто ток там очень маленький, а убивает не напряжение, а ток. Синяя искра – это и есть поток электронов, перескакивающих с шарика на шарик, как бы речка, которая существует только очень краткий миг. Молния будет синей, красивой, но о-о-очень маленькой и абсолютно безопасной!
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
ОТВЕТ НА ПРЯМО ЗАДАННЫЙ ВОПРОС
ОТВЕТ НА ПРЯМО ЗАДАННЫЙ ВОПРОС Вопросу, который был задан естественным кристаллам каменной соли, предшествовала немалая работа физиков — и теоретиков, и экспериментаторов.Вначале теоретики поставили и решили задачу, которая при первом знакомстве с ней кажется очень
1. Молния и электрическая искра
1. Молния и электрическая искра Две с половиной тысячи лет тому назад греческий учёный Фалес из города Милета заметил, что если янтарь (жёлтую смолу, употреблявшуюся для украшения) натереть мехом, то он может притягивать лёгкие предметы — например, волокна или соломинки.
2. Отчего происходит молния?
2. Отчего происходит молния? Подходя близко к высокому дереву или дому, грозовая туча, заряженная электричеством, действует на него совершенно так же, как в рассмотренном нами последнем опыте заряженная палочка действовала на электроскоп. На верхней части дерева или на
3. Как развивается молния?
3. Как развивается молния? Чаще всего молнии, ударяющие в землю, происходят от туч, заряженных отрицательным электричеством. Молния, ударяющая из такой тучи, развивается так.Сначала из тучи по направлению к земле начинают течь электроны в небольшом количестве, в узком
5. Шаровая молния
5. Шаровая молния Кроме линейной, бывают, правда гораздо реже, молнии других видов. Из них мы рассмотрим одну, наиболее интересную — шаровую молнию.Иногда наблюдаются грозовые разряды, представляющие собой огненные шары. Как образуются шаровые молнии — пока ещё не
1. Как часто возникает молния?
1. Как часто возникает молния? Не везде на земле грозы бывают одинаково часто.В некоторых жарких, тропических местах грозы происходят круглый год — почти каждый день. В других же местах, расположенных в северных районах, грозы бывают сравнительно редко. В нашем Союзе с его
2. Куда ударяет молния?
2. Куда ударяет молния? Так как молния представляет собою электрический разряд через толщу изолятора — воздуха, то он происходит чаще всего там, где слой воздуха между тучей и каким-либо предметом на поверхности земли будет меньше. Непосредственные наблюдения это и
Рубиновая молния
Рубиновая молния Какое огромное практическое применение находят себе «невидимые» кванты и какие грандиозные перспективы они открывают перед человечеством, можно показать на примере одного из самых больших достижений современной науки и техники — квантовых
Сколько весит воздух в комнате?
Сколько весит воздух в комнате? Можете ли вы хоть приблизительно сказать, какой груз представляет воздух, вмещаемый вашей комнатой? Несколько граммов или несколько килограммов? В силах ли вы поднять такой груз одним пальцем или же едва удержали бы его на плечах?Теперь,
Маленькая молния
Маленькая молния В следующий вечер брат начал опыты с очень странных приготовлений. Взял три стакана, погрел их возле печки, затем поставил на стол и накрыл сверху самоварным подносом, который тоже сначала погрел немного у печки.– Что это будет? – любопытствовал я. –
Источник
LiveInternetLiveInternet
—Метки
—Рубрики
- живопись (2744)
- искусство (1903)
- разности (1638)
- фотография, фотоискусство (1038)
- история (978)
- видео (897)
- поэзия (834)
- женщина в мире искусства (534)
- Мужчина и Женщина. Отношения. (445)
- необычные места Земли (356)
- архитектура (347)
- музыкальная шкатулка (332)
- философия (304)
- креатив (293)
- фотографии наших читателей (291)
- Что написано пером (247)
- Россия забытая и неизвестная (239)
- ретро (225)
- религия, богословие (219)
- история костюма (217)
- акварель (200)
- идея для дома (176)
- графика (166)
- легенды, предания (160)
- город и люди (фото) (148)
- Питер и пригороды (121)
- открытки (119)
- удивительное рядом (110)
- этно (105)
- зарисовки (105)
- Париж и Франция (84)
- традиции (82)
- абсурд (76)
- прогулка по раю (71)
- старый альбом (69)
- этот день в истории (63)
- импрессионизм (62)
- Ннеобычные памятники (60)
- проба пера (49)
- кич (48)
- народные промвслы (44)
- очумелые ручки (35)
- аллегория (30)
- самиздат (29)
- дом с историей (27)
- удивительное рядом (25)
- керамика (25)
- фамильные ценности (23)
- одного слова достаточно (21)
- Сны (18)
- (17)
- гравюра (13)
- океан (10)
- вопросы (10)
- Грузия. (8)
- Чехия (8)
- Тихий Джаз Души (3)
—Музыка
—Поиск по дневнику
—Подписка по e-mail
—Статистика
ШАРОВЫЕ МОЛНИИ СВОИМИ РУКАМИ Антон Егоров * ЧТО ТАКОЕ ШАРОВАЯ МОЛНИЯ Юрий К.
Воскресенье, 09 Февраля 2020 г. 01:47 + в цитатник
сегодня День Науки и я вспомнил что не равнодушен к ней и создавая теорию Всемирного Давления Частиц и Теорию по Геронтологии (широкий поток аминокислот удачливого охотника включает механизм смерти) и т.д. а сегодня несколько слов о шаровых молниях.
ШАРОВЫЕ МОЛНИИ СВОИМИ РУКАМИ
Чтобы получить настоящую шаровую молнию, нужно вставить в кварцевую трубку цилиндрик из пористого угля. Такие угли используют при дуговом спектральном анализе. Пористый уголь можно пропитать разными растворами и суспензиями. Если нанести на электрод водную вытяжку из почвы, с органикой, частичками угля и глины, то при разряде из электрода вылетит классическая шаровая молния «апельсинового» цвета. Правда, проживет она не дольше секунды, но этого достаточно, чтобы рассмотреть её во всех деталях и полюбоваться ею. (продолжение ниже — ЮК)
Исходное сообщение
renics
продолжение
Для того, чтобы изучать свойства шаровых молний, нам приходилось изготавливать их тысячами. Прежде всего, электрические измерения показали, что шаровая молния — это, действительно, автономное образование: ток в разрядном контуре исчезает через десятую долю секунды, потом молния свободно движется и светится за счет аккумулированной энергии. При этом, кстати, она не горячее огурца на грядке. Этот парадокс связан с особым состоянием ионов в керне шаровой молнии. Каждый возникший при разряде ион сразу гидратируется — во влажном воздухе его плотно окружают молекулы воды. Разноименные ионы притягиваются друг к другу, но молекулы воды мешают им сблизиться. Возникает особое состояние вещества — гидратированные кластеры. Компьютерное моделирование показало, что в гидратированной плазме скорость рекомбинации ионов резко замедляется. Если в «сухой» плазме она происходит за миллиардную долю секунды, то у ионов, законсервированных в кластере, рекомбинация затягивается на десятки и сотни секунд. В течение этого времени молния будет светиться. В керне шаровой молнии гидратированные кластеры с большим дипольным моментом образуют цепочечные и фрактальные структуры. Клуб теплого, влажного воздуха может аккумулировать громадную энергию, до килоджоуля на литр, если получит её при разряде в виде разобщенных ионов разного знака. Таким образом, загадку шаровых молний можно считать разгаданной. А ведь ещё совсем недавно она занимала свое место среди загадок природы, обсуждаемых на телевидении и в печати, рядом с НЛО, Тунгусским метеоритом и Бермудским треугольником. И это неудивительно. Миф о шаровой молнии кормит уже не одно поколение журналистов и ученых. В погоне за сенсацией в сообщения о шаровой молнии вводились красочные подробности. Бесхитростный рассказ фермера: «Раздался сильный удар грома. По водосточной трубе сбежал огненный комок, размером с кулак, и нырнул в бочку с водой. Вода булькнула. Я подошел и сунул руку в воду. Вода, вроде, стала теплее…», — после четырех последовательных перепечаток в газетах превратился в научный труд по вычислению запаса энергии в объеме размером с кулак, способном испарить объем воды размером с бочку.
|