Изготовление гибких плат своими руками

Создавайте собственные проекты на гибких платах

Появление таких микроконтроллерных модулей как Arduino открыло возможность создавать и программировать интерактивные объекты целому поколению радиолюбителей. Сегодня эти модули позволяют без труда управлять чем угодно, от самодельных роботов до дистанционных дверных звонков.

Это обучающее средство поддерживается дополнительными модулями, называемыми «шилды» (shields), среди которых есть дисплеи и драйверы, приводы двигателей, датчики и модули связи. В большинстве своем они являются устройствами Plug and Play, и благодаря поддержке постоянно расширяющейся библиотеки программного обеспечения, открыли для радиолюбителей и новаторов новые возможности проверки своих идей.

Некоторые платформы, такие как Printoo, основаны на гибкой электронике, которая, по сути, добавляет проектам новое измерение им больше не нужно быть плоскими двумерными объектами. Добавьте доступную 3D печать, и порог для разработки инновационных интерактивных идей снижается дальше. Но что делать, если для выполнения необходимой вам функции нет стандартного модуля?

Создайте собственное устройство на гибких платах

Ответ прост – сделать собственный. Недорогие прототипы гибких печатных плат являются одним из ключевых элементов в этом процессе и прекрасным дополнением к трехмерным конструкциям. Компания CIT Technology работала с конструкторами, радиолюбителями и новаторами всех уровней компетенций, чтобы помочь им воплотить свои идеи в жизнь. Все элементы, начиная от сенсорных кнопок, ползунков, светодиодов, динамиков и датчиков, были напечатаны на дешевых и гибких полиэтилентерефталатных подложках.

Схема «Умного ингалятора» с Bluetooth следит за частотой использования.

Сегодня печать гибких плат стала для радиолюбителя недорогой и доступной альтернативой. Технология разрабатывалась на протяжении более десяти лет, и теперь созданные с помощью цифровой печати гибкие схемы профессионального качества превратились в реальность не только для специалистов, но и для энтузиастов. Эти платы, имеющие неизменное качество и предсказуемую проводимость, могут быть первым шагом к масштабированию, если конечной целью является массовое производство.

Для того чтобы сэкономить время, разработчики могут использовать многоподходное прототипирование; другими словами, производить различные варианты проекта и оценивать, какая версия работает лучше – дарвинистский подход. Конструкторы имеют возможность воспользоваться преимуществом того, что выполненные с помощью цифровой печати гибкие платы производятся с использованием непрерывного процесса «с рулона на рулон», непосредственно на основе файлов проекта. Поэтому напечатать десять разных проектов ничуть не сложнее, чем десять раз распечатать один и тот же проект.

Гибкую светодиодную матрицу можно обертывать вокруг изогнутых поверхностей.

Гибкое также может быть плоским

Гибкие схемы не всегда должны изгибаться; зачастую они связаны с каким-то жестким основанием. Кроме того, они могут изменять форму так, чтобы вписаться в изогнутую конструкцию.

Схема Bluetooth датчика. Она складывается в определенную форму и покрывается пластиком.

Разработчики также могут сворачивать и складывать свои схемы в сложные формы, и создавать, например, контакты аккумуляторов, изогнутые ползунки и кнопки или светодиодные индикаторы вокруг объемного объекта.

Тестовые структуры для гибких нагревательных элементов.

Там, где устройства имеют сложные формы, электроника будет традиционно представлять собой несколько обычных плоских печатных плат с разъемами и проводами для их соединения. Благодаря гибкости и низкой стоимости новых схем разработчики смогут совмещать функции нескольких плат в одной взаимосвязанной схеме.

Микропроцессоры, средства беспроводной связи, емкостные сенсорные элементы, светодиодные индикаторы, датчики и динамики могут быть помещены на одной схеме и распределены на поверхности сложного трехмерного объекта без необходимости использования разъемов и проводов.

Шаблон с тонкими линиями для приложений защиты от несанкционированного проникновения.

CIT расширила сферу услуг по прототипированию печатных плат, включив возможность выбора материалов подложки, что раньше было доступно только в условиях крупносерийного производства. Теперь к ним добавились оптически прозрачные и термостабилизированные пленки.

Такие пленки особенно эффективны для создания емкостных сенсорных элементов, которые могут иметь подсветку и содержать элементы управления, светодиоды и другие электронные компоненты все на одной схеме. Гибкость позволяет мыслить и создавать в трехмерном пространстве так что подходите к вопросу творчески!

В своем докладе компания Gartner прогнозирует, что к 2017 году половина предложений, стимулируемых распространением Интернета вещей, будет исходить от новаторов и стартапов, а не от традиционных крупных производителей и поставщиков услуг. Так что, если вы задумались над разработкой и созданием следующего большого проекта, знайте, что лучшего средства для его реализации у вас еще не было.

Источник

Учебное пособие по изготовлению гибких печатных плат

В данном руководстве рассматривается процесс изготовления гибких плат. Данная технология проверялась в течение нескольких лет и потому может приниматься на вооружение другими.

Для выполнения проекта нам понадобится:

  • Восковой принтер или любой другой предпочитаемый метод переноса тонера (В данном учебном материале предлагается использовать даже струйный принтер)
  • Гибкий материал Pyralux (Dupont больше не предоставляет бесплатные образцы. Данный материал можно приобрести в Adafruit или eBay)
  • Хорошо вентилируемое помещение
  • Защитная спецодежда (защитные очки, перчатки, халат, щиток для лица)
  • Соляная кислота
  • Перекись водорода
  • Ацетон (Средство для удаления лака также может подойти).
Читайте также:  Заправка стоек амортизаторов своими руками

Вы должны заранее решить, что данный метод будет вам пригоден. Исходя из опыта, подобные гибкие платы очень легко изготавливать. Можно делать очень сложные схемы (Я обычно использую компоненты серии 0604). Но, исходя из личного опыта, они получаются не очень долговечными. Со временем на таких гибких схемах появляются крошечные трещинки, где соприкасаются гибкие и жесткие материалы. Результаты данного метода вполне приемлемые, но если вам потребуется более надежная схема, тогда используйте стандартные печатные платы. (DuPont продает различные материалы, которые позволяют склеить проблемные места, но я еще их не тестировал. Также могут пригодиться некоторые типы эластичного покрытия, но они также не проверялись).

Шаг 1: Разработка схемы

Я использовал мощный и интуитивный инструмент разработки печатных плат Eagle. Рекомендую вам его изучить. В противном случае можно использовать любую векторную программу, и даже Microsoft Paint для обработки растровых изображений. Примите во внимание следующее:

  • Создавайте только черно-белое изображение.
  • Не используйте серые тона.
  • Старайтесь избегать диагональных линий, чтобы минимизировать проблемы при сглаживании.
  • Стараетесь делать сигнальные линии более жирными. Это поможет на этапе травления и пайки.
  • При экспорте изображения выставляйте максимально возможное разрешение DPI (лучше всего 600 DPI).
  • Для печати в требуемом масштабе используйте программу Microsoft Paint. Перейдите в меню опции и укажите разрешение dpi перед началом печати (Можете воспользоваться программой Photoshop или другим программным обеспечением).

Шаг 2: Печать созданной схемы

Перед печатью протрите Pyralux промышленным спиртом. Отпечатки пальцев могут привести к отслаиванию воска. Вы можете разрезать Pyralux на небольшие кусочки и далее распечатать на них схему требуемого размера. Я использую формат A6.

(Достоинство данного метода в том, что вы можете выполнить несколько тестовых отпечатков на бумаге, и только потом перенести схему на Pyralux.)

Шаг 3: Процесс травления

Возьмите ванночку и добавьте в нее соляную кислоту (HCl) и перекись водорода (H202) в соотношении 1:2 (пол чашки соляной кислоты на полную чашку перекиси водорода). ИСПОЛЬЗУЙТЕ ЗАЩИТНУЮ СПЕЦОДЕЖДУ. Почувствуйте себя настоящим ученым.

Во время реакции соляной кислоты будут выделяться пары. После смешивания соляной кислоты и перекиси водорода, полученная жидкость будет нагреваться, и образовывать пузыри. Положите вашу печатную схему в данную смесь. Во время реакции необходимо перемещать плату для более равномерного протравливания. Избегайте скопления пузырьков под платой.

Выделяемые пары очень токсичны и вызывают коррозию. Один раз в мастерской подобный пар испортил обычные металлические инструменты. В принципе, процесс травления лучше проводить на открытом воздухе, а если внутри, то создавать адекватную вентиляцию.

Держите возле себя питьевую соду. Она может понадобиться для нейтрализации кислоты и ее превращения в зеленую, соленую массу.

Будьте внимательны, вы работаете с токсическими веществами!

Шаг 4: Чистка

Протрите плату в ванночке с растворителем для ногтей, или используйте тряпочку, смоченную в ацетоне, для удаления остатков краски.

Шаг 5: Пайка компонентов

После тщательно проведенной чистки возьмите крошечные резисторы, smd конденсаторы, и другие компоненты, монтируемые на поверхность, и наберитесь терпения, чтобы всех их припаять.

Я сначала наношу небольшое количество припоя на все контактные площадки. Далее беру светодиоды, резисторы, конденсаторы с помощью тонкого пинцета и помещаю их на свои посадочные места. Я нагреваю припой и даю ему растечься вокруг ножки компонента.

Компоненты, монтируемые на поверхность, такие как ATmega328p, можно сначала прикрепить к плате с помощью двухстороннего скотча, после чего припаять ножку за ножкой паяльником с очень тонким жалом.

Примечание: Вы также можете использовать компоненты для установки в отверстие. Для этого нужно использовать зеркальное изображение схемы, поскольку ножки компонентов нужно припаивать с задней стороны платы. Подобным способом я устанавливаю штырьковые разъемы.

Источник

Как делать качественные печатные платы в домашних условиях.

Любой электронный девайс требует соединения воедино кучи деталей. Конечно, можно спаять девайс на монтажной плате, но при этом велик риск наделать кучу ошибок, да и сам девайс будет выглядеть весьма стремно. Торчащие во все стороны провода оценят только любители трешдизайна. Поэтому, будем делать печатную плату!

А чтобы тебе было проще, я сделал видео урок на тему изготовления печатных плат методом Лазерного Утюга ака ЛУТ.

Полный цикл, от подготовки платы с куска текстолита, до сверления и лужения.

Что требуется:
0) Рисунок печатной платы в электронном виде.
1) Лазерный принтер, для печати оттиска будущей платы. Желательно чтобы принтер имел возможность прямого тракта — печать с минимальным изгибом бумаги. У меня Samsung ML1520. Печать на максимум, без всякой экономии тонера!
2) Фольгированный текстолит.
3) Фотобумага для струйной печати Lomond 120г/м глянцевая, односторонняя с улучшеным покрытием. Также неплохие результаты на бумаге Lomond 230г/м глянцевая.
4) Щетка для замши с металлическим+пластиковым ворсом (опционально)
5) Ацетон
6) Шкурка нулевка

Весь процесс был порезан на операции для удобства просмотра, обработки и закачки в инет. При изготовлении платы, между операциями, период времени составлял считанные минуты. В основном оно тратилось на поиск какой-нибудь ваты, ацетона или пинцета, чтобы ухватить горячую плату. Так что можете считать, что они идут без перерыва во времени, чтобы оценить скорость изготовления плат.

2. Накатываем рисунок.
Наша цель сделать на печатной плате защитный рисунок, который предохранит дорожки от вытравливания в агрессивном к металлам растворе хлорного железа.

Читайте также:  Как сделать автомойку мойку своими руками

3. Удаляем бумагу:
Отмачивание и срыв бумаги, зачистка глянцевого слоя.

4. Травление.
В качестве травильного раствора юзается хлорное железо — адская вещь, сжирающая моментом почти все металлы. Раствор делается из соотношения 250гр хлорного железа на литр воды. Точность тут не важна особо.

5. Удаление тонера
Мавр сделал дело, мавр должен уйти.

6. Сверление отверстий.

8. Что, в итоге, получилось.

Источник

Делаем гибкую печатную плату

Материал по мотивам методики создания магнитопланарных излучателей для наушников и колонок. Подход имеет широкий спектр применения, не только для создания электроакустических систем. Например, для гибких шлейфов взамен порванных, антенн и прочего, на что хватит воображения и терпения. Один из вариантов использования фоторезистивного метода вместо популярного ЛУТ.

Введение

Все началось с поиска если не идеального, то хорошего звука. В моей предыдущей статье я сделал ссылку на эту разработку и пообещал выпустить эту статью. Сразу хочу поблагодарить сообщество энтузиастов, создающих магнитопланарные излучатели, вдохновивших меня на создание очередного велосипеда. А также запоздалая благодарность к предыдущей статье, вновь за вдохновение, сообществу, занимающемуся созданием ленточных драйверов. Но, однако, вернусь к теме.

Необходимость в тонкой гибкой печатной плате (PCB), коей и является, по сути, магнитопланарная катушка, может возникнуть много где и много у кого. В случае большой серии изделий самым разумным шагом является заказ у крупного производителя, но на более ранних стадиях работы весьма разумно выглядит создание этой платы самостоятельно.

Однако, данное занятие требует весьма значительных вложений сил, денег и времени, так что насчет оптимальности ещё есть о чем поговорить. Мой подход совместим для работы с весьма и весьма тонкими пленками и слоем металла, к тому же имеет весьма большую точность. Правда эта точность по факту ограничивается огромной кучей факторов, с которыми, тем не менее, можно бороться. Теоретически неустранимое ограничение — разрешение фоторезиста, обычные листы которого имеют показатель что-то порядка 50 мкм. Конечно, в гаражных условиях это недостижимая утопия, для показателя хотя бы в 100 мкм нужны условия, приближающиеся к т.н. чистой комнате. По итогу обычно можно получать платы с шириной дорожек порядка 0.3-0.2 мм в условиях достаточно подготовленного места, относительно чистого (никаких котов!) и при наличии всех инструментов.

А в данной методике используется большой набор инструментов. Понадобится.

ЧПУ станок с лазером 405 нм. Я использовал 450 нм, это неверно, но тоже работает (об этом позже). Обязательно использование защитных очков! Мощность — 50 мВт. Важно наличие качественной оптики.

Пленочный фоторезист. Аэрозольный не подходит. Не наткнитесь на просрочку, фоторезист хранится относительно недолго.

Раствор для травления. В случае алюминия — медный купорос достаточной степени очистки, это важно, тот что продается в дачных магазинах, как правило, с большой примесью железного купороса, его можно отличить по более зеленому цвету, он травит сильно хуже. В случае меди всё, что и обычно.

Гидроксид натрия. Щелочь для смывания фоторезиста. Лучше брать чистый, а не в смеси а.к.а. крот. Едкая субстанция, работайте в перчатках.

Ровная, чистая, термостойкая поверхность для работы.

Техпроцесс

Фоторезист

Для начала нужно составить топологию и создать программу для ЧПУ. Это весьма важный этап и не стоит его недооценивать. Дело все в том, как лазер индуцирует фоторезист.

Пятно лазера может иметь совершенно разную форму и интенсивность, далекую от идеальной. Здесь важно учитывать особенности вашего лазера. Например, мой китайский лазер имеет отвратительную оптику с огромным пятном фокуса и кривым распределением пучка, так что пришлось импровизировать. Чтобы частично исправить недостаток этой оптики, я сделал следующее — взял лист фольги, сделал в нем аккуратную маленькую дырочку и поставил после выхода лазера. Таким образом удалось получить очень маленькое пятно лазера с относительно равномерным световым потоком. Мой лазер также не подходил по длине волны (450 нм) и мощности (1 Вт), но это я исправил, частично перекрыв поток лазера и снизив мощность на самый минимум.

Чтобы получить максимальное качество засвета, необходимо минимизировать тепловую активацию фоторезиста и паразитный засвет. Тепловая активация фоторезиста снижается путем кратного уменьшения мощности и добавления пары дополнительных проходов.

Паразитную засветку я уменьшил так. Вместо нанесения фоторезиста непосредственно на печатную плату, я взял нужный кусок фоторезиста, под него подложил материал, поглощающий световое излучение (лист бумаги с тремя слоями тонера на нем) и, придавив сверху стеклом, отправил под лазер. Темный материал удаляет большую часть энергии, не позволяя отраженному свету засветить то, что не нужно. Чем лучше этот поглощающий материал, тем точнее и тоньше получается дорожка. Мой вариант с листом бумаги и тонером не идеален, под лазером углерод начинает сам излучать свет, хоть и не в том диапазоне, в котором активируется фоторезист, но частично все-таки пересвечивает. Что же касательно длины волны, как вообще 450 нм могут засветить фоторезист? На самом деле в моем случае активация происходила тепловой, а не световой энергией. Здесь свои особенности и так лучше не делать, а брать лазер точно под фоторезист. Иначе снижается качество границы дорожки и сложнее сделать тонкие промежутки между ними.

И так, на выходе получаем простой лист засвеченного фоторезиста. Строго говоря, он так может храниться в подходящих условиях до истечения срока годности, что оказалось довольно удобно — заготовить засвеченный фоторезист, а потом по мере необходимости использовать.

Читайте также:  Выдвижные ворота с калиткой своими руками

Подготовка основы

В моем случае использовался алюминий по причине лучшей доступности и простоты и скорости травления. Я брал обычную пленку для запекания, она выдерживает нагрев до 200 градусов, что при последующей пайке играло мне на руку. Кроме того, она достаточно тонкая и неплохо подходила под мои задачи. В вашем случае это может быть что угодно, хоть кусок скотча, хотя пайку он переживает плохо. Можно использовать фольгированные материалы, но иногда это ввиду каких-то требований невозможно или нецелесообразно, и иногда можно делать металлизацию самостоятельно.

В моем случае наносился слой фольги на пленку. Я нашел весьма хороший вариант для себя — УФ клей для модулей смартфонов. Также может подойти клей марки БФ-6.

Удобство УФ клея в том, что он не затвердеет раньше времени и идеально подошел по механическим характеристикам, легко смывается ацетоном. Какой бы вы клей не выбрали, склеиваем по инструкции, делая как можно меньший равномерный слой между диэлектриком и металлом.

Нанесение фоторезиста

Важный и ответственный этап. Он заключается в правильной склейке готового фоторезиста на подготовленную основу. На самом деле это такой же важный этап и для традиционного способа, который подразумевает предварительное нанесение фоторезиста на основу. Крайне важно не допустить мелких пузырей. Это сложно, так что достаем утюг. Он выполняет сразу две задачи — надежную склейку фоторезиста с металлом и, при должной сноровке, поможет выгнать пузыри из слоя между металлом и фоторезистом в слой между фоторезистом и внешней защитной пленкой, где этот пузырек безвреден. Важно не перегревать фоторезист, он может активироваться там, где не надо. Действуем аккуратно и короткими подходами для остывания, разглаживая фоторезист, из центра на края. Лучше всего это делать через слой бумаги, так как фоторезист обязательно проступит из-за краев защитной пленки и начнет клеиться ко всему, что достанет.

Промывание

На самом деле тут всё делается по инструкции к фоторезисту. Просто мешаем щелочь в нужных пропорциях, и ждем растворения не активированного фоторезиста. Это происходит быстро и важно не прозевать. Иначе вообще весь фоторезист отойдет от металла. Если все-таки немного упустили момент и пара дорожек начала отходить, не страшно, не всё потеряно.

Берём фен (можно обычный бытовой) и тщательно просушиваем фоторезист. Просушили, теперь снова тщательно пройдитесь утюгом через ту же бумагу. Здесь уже можно прижимать утюг более тщательно. Это обеспечит хорошее прилипание даже отошедшего фоторезиста. На крайний случай можно заделать пропуски маркером. Обязательно проконтролируйте качество смывания не активированного фоторезиста. После просушки можно повторить смывание.

Травление

Травление производится в соответствии с металлом, нанесенным на подложку. В моем случае травился алюминий с помощью раствора медного купороса. Происходит реакция восстановления меди из раствора с замещением его в сульфате алюминием. Так как алюминий очень хороший восстановитель, травится он очень быстро с выделением большого количества медного порошка, который я рекомендую счищать мягкой щеткой с мелкой щетиной. Температура раствора максимальная, в которой сможете комфортно держать пальцы, порядка 40 градусов. Концентрация раствора медного купороса подбирается по правилу: чем больше, тем лучше, лишь бы полностью растворился. Я размешивал в пропорциях 15 грамм купороса на 150 грамм воды, но можно разводить в пропорциях до 30 грамм на 100 грамм воды, чтобы при остывании раствор не становился перенасыщенным.

На гибкой подложке медь я не травил, однако, имею опыт работы с обычным фольгированным стеклотекстолитом и думаю советы здесь будут излишни, так как весь интернет полон рецептами растворов и методиками и все они вполне рабочие, я лично пользовался раствором лимонной кислоты, перекиси водорода и поваренной соли.

На этом этапе важно выдержать время, чтобы не слишком истончить дорожки. Если передержать, то раствор въестся под фоторезист. Я определял готовность визуально, на пленке у меня осталось небольшое количество частичек алюминия. Научился определять это на глаз. Кроме того, скорость зависит от раствора, время травления вам придется подбирать самостоятельно исходя из качества медного купороса, температуры и толщины материала. Ничего страшного в этих частицах нет — они прекрасно смываются с ацетоном вместе с клеем. Особо стойкие перемычки между дорожками я удалял механически ваткой, или же щеткой с тонкими щетинками. При таких размерах полезно иметь увеличительное стекло, иначе можно просто пропустить перемычку или ещё как-то мусор.

Собственно, после промывки растворителем получается готовая гибкая печатная плата. При желании можно паять (но очень аккуратно и быстро, чтобы не расплавить подложку). Как вариант, не лучший, но всё же можно использовать сплав Розе. Или паять обычным припоем, но очень быстро и точечно.

Послесловие

Почему же я не использовал здесь ЛУТ. Главным образом из-за того, что этот метод очень плохо работает с алюминием. Кроме того, добиться высокой точности с ним тяжелее.

Я получил ширину промежутка между дорожками в среднем порядка 0.27 мм, что для домашних условий весьма неплохо. Особенно если учесть перспективы с более конкретным подходом: с точным замером времени на травление, использованием хороших материалов и подходящего оборудования. В общем, фоторезист подходит для гибких материалов так же хорошо, как и для стеклотекстолита.

Источник

Оцените статью