- Датчик влажности почвы своими руками
- Сделай сам своими руками О бюджетном решении технических, и не только, задач.
- Самые интересные ролики на Youtube
- Пролог.
- Электрическая схема порогового датчика влажности почвы.
- Как это работает?
- Конструкция электродов.
- А это детали, из которых были собраны электроды.
- Самодельные приборы для садовода
- Самодельная схема измерителя влажности почвы
- Измеритель кислотности почвы и ее влажности принцип работы, популярные модели
- Пролог
- Шлюз с интернет по WiFi
- Планы на будущее
- Блог пользователя ma3i4
- Фото датчиков влажности почвы
- Как пользоваться прибором
- Вредители в почве комнатных растений
- Конструкция щупов сенсора влажности
- Конструкция электродов.
- А это детали, из которых были собраны электроды.
- Зачем нужен измеритель
- Как это работает
- Инструкция
- Народные советы
Датчик влажности почвы своими руками
Пожалуй, у каждого из нас были такие моменты, когда нужно куда-нибудь уехать на недельку-две, всё бы хорошо, но вот кто позаботится о комнатных растениях? Одна неделя без полива запросто может оказаться роковой для цветов на подоконнике, особенно если дело происходит летом. Да и просто так, ради интереса автоматизировать процесс полива цветов хотелось бы многим. Ключевой элемент таких автоматизированных систем — датчик влажности почвы, который должен безошибочно срабатывать, когда почва подсохнет. Схема такого датчика представлена ниже.
Она основана на операционном усилителе, который работает в качестве компаратора, сравнивая напряжение на своих входах. К каждому из входов подключен делитель напряжения — в одном случае он представляет собой потенциометр, позволяющий вручную установить напряжение, а вот втором — делитель из постоянного резистора и почвенного щупа. Как известно, при иссушении земли её электрическое сопротивление увеличивается, именно этот эффект и регистрирует датчик. Потенциометром мы можем настраивать порог, при какой влажности почвы произойдёт срабатывание. В схеме можно использовать любой операционный усилитель, по распиновке на плату подойдут TL062, TL072, TL082, RC4558, NE5532.
Схема содержит два светодиода, красный и зелёный (цвета можно брать любые) — красный горит всегда, когда плата подключена к питанию, а зелёный загорается тогда, тогда влажность почвы падает до определённого порога. Через резистор выход операционного усилителя управляет базой транзистора, который, в свою очередь, коммутирует обмотку реле. Можно применить транзисторы КТ3107, КТ814 или другие PNP структуры с током не менее 100 мА, а лучше больше. Щуп, который находится в земле в самом простейшем случае может представлять собой две толстые проволочки длиной 4-5 см, воткнутые в землю на расстоянии 1-2 см друг от друга. Необходимо выбирать такие материалы, которые не окисляются и не ржавеют в земле. Также можно использовать готовые щупы, один из таких приведён на фото ниже.
Схема собирается на небольшой печатной плате, файл с которой прикреплён к статье. Плата содержит клеммную колонку на 6 контактов: 2 для питания, 2 для подключения реле и ещё 2 для подключения щупа. Следует отметить, что на выход схемы не обязательно подключать реле. Это может быть просто световой индикатор, сирена либо любой другое маломощное электронное устройство. Также схему можно усовершенствовать, поставив более мощный PNP транзистор, в этом случае схема сможет напрямую коммутировать мощную нагрузку, например, водяной насос. Удачной сборки!
Источник
Сделай сам своими руками О бюджетном решении технических, и не только, задач.
Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки
Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://oldoctober.com/
Самые интересные ролики на Youtube
Пролог.
Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.
Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.
Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.
Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней. электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.
Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.
Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.
И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в «аккумулятор».
Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.
Электрическая схема порогового датчика влажности почвы.
В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.
R1 = 22MΩ R2, R9 = 12kΩ R3 = 470kΩ R4 = 30kΩ R5 = 47kΩ R6 = 1MΩ R7 = 5,1MΩ R8 = 22MΩ | C1 = 1µF C2 = 1µF C3, C4 = 0,1µF C5 = 10µF DD1 = К561ЛЕ5 R9 = из расчёта 1kΩ на каждый Вольт |
Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).
На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://oldoctober.com/
Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.
Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.
Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.
Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.
Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.
В реальной конструкции автомата для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.
Как это работает?
Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.
Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.
Конструкция электродов.
Конструкция электродов должна обеспечить возможность измерения влажности почвы возле корней растения. Это особенно актуально для кактусов, полив которых осуществляется мизерным количеством воды.
Для изготовления электродов я сначала выбрал стальную углеродистую проволоку, но она слишком быстро заржавела, и её пришлось заменить на нержавеющею.
Для уменьшения уровня внешних электромагнитных помех, электроды соединяются со схемой экранированным кабелем, оплётка которого подключена к корпусу прибора.
А это детали, из которых были собраны электроды.
- Винт М3х8.
- Гровер М3.
- Шайба М3.
- Лепесток М3.
- Втулка – сталь, Ø8х10мм.
- Винт М3х6.
- Пластина – стеклотекстолит S = 2мм.
- Электрод – нерж. сталь Ø1,6х300мм.
Наверное, можно было бы выбрать и другой способ крепления электродов. Но, я выбрал такое крепление, чтобы можно было оперативно регулировать глубину погружения тридцатисантиметровых электродов в почву, а кабель, при этом, не создавал слишком большую нагрузку при погружении электродов в неглубокий горшок.
Источник
Самодельные приборы для садовода
Предлагаю измерители влажности почвы и её температуры. Схема первого показана на рис. 1. Как показали опыты, более-менее объективными результаты измерения влажности почвы получаются при довольно большом токе через неё — несколько миллиампер.
Самодельная схема измерителя влажности почвы
Чтобы получить его, напряжение питания прибора выбрано равным 9 В (батарея “Крона”). Для предотвращения поляризации электродов направление тока должно быть переменным. Прибор представляет собой обычный симметричный мультивибратор на транзисторах VT1 и VT2 с эмиттерным повторителем на транзисторе VT3.
Частота генерируемых импульсов 400…500 Гц. Через конденсаторы СЗ и С4, металлические щупы и сопротивление почвы, зависящее от его влажности, генерируемые импульсы поступают на выпрямитель из диодов VD2 и VD3, нагруженный микроамперметром РА1 — М476 от переносного магнитофона.
Миллиамперметр зашунтирован диодом VD1, что приближает к линейной зависимость угла отклонения стрелки микроамперметра от влажности почвы. Подстроечным резистором R2 регулируют чувствительность прибора. Оценить влажность почвы можно и по громкости звучания пьезоизлучателя звука BQ1.
Погружаемые в грунт щупы длиной 20…25 см сделаны из шампуров из нержавеющей стали. Они согнуты в виде буквы Г и закреплены параллельно на пластине из изоляционного материала. Расстояние между щупами — 10…15 см. Большая их часть покрыта слоем эпоксидной смолы.
Оставлены незащищёнными лишь острые концы длиной 3…5 см. Это позволяет измерять влажность почвы на разной глубине. Перед использованием прибора его щупы нужно погрузить в грязную воду (например, в лужу) и подстроенным резистором R2 установить стрелку микроамперметра РА1 на последнее деление шкалы.
Контролировать влажность почвы обязательно нужно у влаголюбивых растений — капусты, огурцов, кабачков. Следует учитывать, что растения могут поглощать так называемую связанную влагу, при этом грунт кажется сухим на ощупь. Второй прибор — измеритель температуры грунта. Его схема — на рис. 2.
Он представляет собой резистивный мост, в одно из плеч которого включён терморезистор RK1, сопротивление которого зависит от температуры. На схеме указано его сопротивление при температуре 25 °С. При О °С оно возрастает приблизительно до 5 кОм. Питается прибор от двух гальванических элементов с общим напряжением 3 В.
Терморезистор имеет вид таблетки диаметром около 8 мм. Он приклеен у заострённого конца пластмассовой трубки, погружаемой в почву на глубину до 25…30 см. Для удобства отсчёта глубины погружения на стержень через каждые 1…3см нанесены риски. Провода от терморезистора проходят внутри трубки и заканчиваются штыревой частью разъёма Х1.
Для налаживания изготовленного прибора подключённый к нему терморезистор помещают в тающий лёд. Установив движок подстроенного резистора R3 в крайнее правое положение, подстроенным резистором R2 устанавливают стрелку микроамперметра РА1 на нулевое деление.
Затем берут терморезистор в руку и после его прогрева до температуры тела, не трогая подстроенный резистор R2, устанавливают подстроенным резистором R3 стрелку микроамперметра РА1 на последнее деление шкалы. Отрегулированный таким образом прибор будет с достаточной точностью измерять температуру от О °С до +37 °С.
Оптимальная температура почвы неодинакова для разных растений. Например, при её температуре менее +8 °С картофель может не взойти. Однако для всех садовых и огородных растений крайне низкая (ниже О °С) и крайне высокая (выше +30 °С) температура почвы опасна.
Источник
Измеритель кислотности почвы и ее влажности принцип работы, популярные модели
Пролог
Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.
Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.
Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.
Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней… электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.
Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.
Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.
И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в «аккумулятор».
Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.
Шлюз с интернет по WiFi
Быстро собрал на макетной плате, в качестве БП взял плату от ненужного зарядника 5В
Итак железки собраны, прошивки разработаны и загружены. Сенсоры вставлены в растения. Ток в режиме покоя получился около 30мкА. В активном режиме 5мА. Батареек CR2032 по моим расчетам должно хватить примерно на пол года. (Для увеличения срока службы батареи можно увеличить время между замерами влажности)
Интерфейс пока выглядит так
Дальность передачи от сенсора получилось не очень большой — в пределах комнаты уверенно, из другой комнаты уже после пляски с бубном у антенны. Виной тому самодельные антенны, дешевые передатчики и низкое напряжение питание сенсора — 3В. Не зря в радиовыключателях и пультах стоят батарейки на 12В. Хотя для системы, работающей в одной комнате, низкая дальность это даже плюс — меньше забивается эфир.
Планы на будущее
- Повысить дальность передатчика заменой стабилизатора на 5В.
- Поставить миниатюрные но более качественные передатчики STX822 с покупными антенками на 433МГц
- Для уменьшения платы использовать ATTINY85 (Как нибудь будет время,попробую запихать весь код в ATTINY13)
По прошивкам сенсоров, шлюза, а также серверной части будет моя следующая статься. Исходники, схемы, чертежи печатных плат можно скачать с GITHUBа
Блог пользователя ma3i4
Всем привет, сегодня в нашей статье мы рассмотрим как сделать датчик влажности почвы своими руками. Причиной самостоятельного изготовления может послужить износ датчика (коррозия, окисление), либо просто невозможность приобрести, долгое ожидание и желание смастерить что-либо своими руками. В моем случае желанием сделать датчик самому послужил износ, дело в том что щуп датчика при постоянной подаче напряжение взаимодействует с почвой и влагой в результате чего окисляется. Например датчики SparkFun покрывают его специальным составом (Electroless Nickel Immersion Gold) для увлечения ресурса работы
Так же что бы продлить жизнь датчику лучше подавать питание на датчик только в момент замеров. В один «прекрасный» день я обратил внимание что моя система полива увлажняет почву без лишней надобности, при проверке датчика я извлек щуп из почвы и вот что я увидел:
Из-за коррозии между щупами появляется дополнительное сопротивление в результате которого сигнал становиться меньше и arduino считает что почва сухая. По скольку Я использую аналоговый сигнал то схему с цифровым выходом на компараторе я делать не буду для упрощения схемы.
На схеме изображен компаратор датчика влажности почвы, красным цветом отмечена часть которая преобразует аналоговый сигнал в цифровой
Не отмеченная часть это часть необходимая нам для преобразование влажности в аналоговый сигнал, мы ее и будем использовать. Чуть ниже я привел схему подключение щупов к arduino.
Левая часть схемы показывает как щупы подключаются к arduino, а правую часть (с резистором R2) я привел для того что бы показать за счет чего меняются показания АЦП. Когда щупы опущены в землю между ними образуется сопротивление (на схеме я отобразил его условно R2), если почва сухая то сопротивление бесконечно большое, а если влажное то оно стремиться к 0. Так как два сопротивления R1 и R2 образуют делитель напряжение, а средней точкой является выход (out a0) то от величины сопротивления R2 зависит напряжение на выходе. К примеру если сопротивление R2=10Kom то напряжение будет 2,5В. Можно сопротивление запаять на проводах что бы не делать дополнительных развязок, для стабильности показаний можно добавить конденсатор 0,01мкФ между — питания и out. схема подключение следующая:
Поскольку с электрической частью мы разобрались, можно перейти к механической части. Для изготовления щупов лучше использовать материал менее всего подверженного коррозии что бы продлить жизнь датчика. Можно использовать «нержавейку» или оцинкованный метал, форму можно выбрать любую, даже можно использовать два куска проволочки. Я для щупов выбрал «оцинковку», в качестве фиксирующего материал использовал небольшой кусок гетинакса. Так же стоит учесть что настояния между щупами должно быть 5мм-10мм, но не стоит делать больше. На концы оцинковки я напаял провода датчика. Вот что получилось в итоге:
Не стал делать подробный фото отчет, все и так просто. Ну и фото в работе:
Как я уже раньше указывал лучше использовать датчик только в момент измерений. Оптимальный вариант включение через транзисторный ключ, но так как потребление тока у меня составило 0,4мА можно включить на прямую. Для подачи напряжения во время замеров можно подключить контакт датчика VCC к пину ШИМ или использовать цифровой выход на момент измерений подавать высокий (HIGH) уровень, а потом устанавливать низкий. Так же стоит учесть что после подачи напряжения на датчик необходимо выждать некоторое время для стабилизации показаний. Пример через ШИМ:
Спасибо всем за внимание!
Фото датчиков влажности почвы
Как пользоваться прибором
Как уже говорилось ранее, не требуется определенных знаний для эксплуатации измерителя. Для каждого устройства в обязательном порядке прикладывается производителем подробная инструкция.
Но мы все же решили подсказать методы, при которых показания будут более точными:
- если вы внесли удобрения, то произведите замеры не ранее, чем через три дня;
- не забудьте полить участок, который будете проверять;
- вокруг щупа почву необходимо хорошо утрамбовать;
- необходимо производить по три замера, а потом вычислять средний показатель;
- стержень измерителя должен содержаться в чистоте и после каждой проверки протираться салфеткой.
При покупке поинтересуйтесь у продавца, откалиброван ли измеритель кислотности почвы. Если нет, то необходимо приобрести буферный раствор и произвести калибровку самостоятельно. Далее предлагаем ознакомиться с самыми популярными и недорогими моделями.
Вредители в почве комнатных растений
Плесень, поражающая почвы комнатных растений, не единственная проблема, волнующая цветоводов. Часто при выращивании цветов можно столкнуться и с вредителями насекомыми. Некоторые из них поражают почву, нанося вред корневой системе растения.
Причиной появления вредителей могут стать и некачественная почва, и неправильный уход за растением. В борьбе с насекомыми помогут специальные промышленные препараты, а также народные средства, например мыльный раствор или раствор марганца.
- Мокрицы. Появляются благодаря избытку влаги в почве. Опасны тем, что наносят вред, корням растения поедая их. При их появлении следует уменьшить полив. Насекомых можно удалить вручную.
- Белые жучки (подуры) в почве комнатных растений. Появляются из-за повышенной влажности земли или воздуха. Способ борьбы с ними — верхний слой почвы должен подсыхать, после этого они пропадут. Можно также бороться и химическими веществами: раствор марганцовки, стрелки Доктор, Актара.
- Нематоды. Микроскопические черви, селящиеся на корнях растений. Их появлению также способствует избыток влаги в почве. В борьбе с этими опасными вредителями можно использовать антигельминтные препараты, таких как Декарис. Сильно пораженное растение лучше уничтожить во избежание заражения остальных растений.
- Луковичный корневой клещ. Наносят вред, прежде всего луковичным растениям. Появляются благодаря повышенной влажности. Профилактические меры: хороший дренаж, умеренный полив. Пораженные клещом корни и луковицы обрабатывают доступным системным инсектицидом, например Актеллик, Актара.
Конструкция щупов сенсора влажности
- Готовый покупной щуп. Имеет стабильные характеристики. Из недостатков — небольшая глубина погружения и цена почти 40 руб.
2. Щуп из шпильки M3 их нержавейки. Удобно прикручивается прямо к плате. Цена шпильки примерно 120/м. Длину можно сделать любую. Недостаток — влажность мерится по всей длине щупа.
Это недостаток обоих щупов влажности. Выяснилось, что вода стоит в нижней части горшка, у корней растения. А измерение происходит в верхней части почвы, как у покупного сенсора или по всей глубине, как у шпильки, корая длиннее. Да и цена шпильки из нержавейки получается тоже не самой маленькой.
3. Поэтому родилась новая конструкция из электрического кабеля ШВВП 2 x 1.5 (а лучше 2 x 2.5). Длину щупов сделал 150мм, от изоляции зачистил на 50мм. Могу мерить таким щупом у самых корней растения. Стоит корейки, вернее практически бесплатно, так как обрезки провода остались после ремонта.
Неплохо было бы еще защитить медь от окисления каким нибудь покрытием
Конструкция электродов.
Конструкция электродов должна обеспечить возможность измерения влажности почвы возле корней растения. Это особенно актуально для кактусов, полив которых осуществляется мизерным количеством воды.
Для изготовления электродов я сначала выбрал стальную углеродистую проволоку, но она слишком быстро заржавела, и её пришлось заменить на нержавеющею.
Для уменьшения уровня внешних электромагнитных помех, электроды соединяются со схемой экранированным кабелем, оплётка которого подключена к корпусу прибора.
А это детали, из которых были собраны электроды.
- Винт М3х8.
- Гровер М3.
- Шайба М3.
- Лепесток М3.
- Втулка – сталь, Ø8х10мм.
- Винт М3х6.
- Пластина – стеклотекстолит S = 2мм.
- Электрод – нерж. сталь Ø1,6х300мм.
Наверное, можно было бы выбрать и другой способ крепления электродов. Но, я выбрал такое крепление, чтобы можно было оперативно регулировать глубину погружения тридцатисантиметровых электродов в почву, а кабель, при этом, не создавал слишком большую нагрузку при погружении электродов в неглубокий горшок.
Зачем нужен измеритель
Каждый дачник уверен, что очень важно знать о том, каковы основные параметры земли, а это Ph, влажность, температура и освещенность. Если имеется желание получить хороший урожай, то культуру необходимо высаживать и выращивать в предназначенном для нее грунте
Допустим, для капусты будет идеальна ваша земля, а вот морковь на ней уже не уродится. Чтобы точно знать, куда и какую культуру пристроить, какие внести удобрения и добавки, необходимо приобрести измеритель кислотности почвы. Они бывают жидкими, а есть и пластиковые, что более удобно для применения. Такой прибор не требует для использования диплома об окончании сельскохозяйственного института, им довольно легко пользоваться.
Сегодня продается множество специализированных измерителей, которые подойдут и для огромного промышленного хозяйства, и для небольшого участка возле дачного домика. О самых популярных моделях, правилах использования мы поговорим в данной статье. Только для начала узнаем о том, как же справлялись наши предки на своих огородах и выращивали достойный урожай. У них были свои хитрости, поэтому при отсутствии измерителя кислотности почвы и прочих ее параметров вы легко сможете воспользоваться знаниями дедушек и бабушек.
Как это работает
Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.
Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.
Инструкция
Если вы приобрели данный прибор и потеряли инструкцию, мы поможем вам вспомнить правила использования. Измеряем освещенность:
- Переведите переключатель на режим Light.
- Установите щуп в грунт около растения.
- Солнечная батарея, встроенная в прибор, направляется в сторону источника поступления света.
- Не загораживайте свет.
Измеритель кислотности (Ph) почвы:
- Переведите переключатель на Ph, погрузите щуп в пробу грунта, из которой предварительно была сделана кашица. Щуп должен быть отполирован кусочком наждачной бумаги и протерт салфеткой.
- Измеритель помещается вертикально до основания корпуса. Почва должна быть немного увлажнена.
- Через минуту прочтите показания на экране.
- Переключите на Moist, вставьте щуп в землю.
- Показания таковы: красный — сухой или слегка увлажненный грунт, подойдет лишь для выращивания колючек и кактусов; синий — переувлажнение, не поливайте растения, пока грунт немного не подсохнет; зеленый — идеальное увлажнение.
Пользоваться всеми приборами для замеров стоит точно так же. Предлагаем рассмотреть другие модели.
Народные советы
Мы решили предоставить несколько самых популярных кислотности земли подручными средствами. Ознакомившись с ними, вы поймете, что пользоваться профессиональным прибором куда удобнее. Надеемся, что народные советы смогут вам пригодиться, если измерителя не окажется под рукой или его батарейка сядет. Все, кто уже используют специализированный измеритель кислотности почвы, знают, насколько неточными бывают его показатели, если батарейку пора сменить.
Итак, что нам поможет?
- Уксус и сода есть в доме у каждой хозяйки, да и на даче эти продукты часто бывают. Итак, чтобы измерить кислотность, возьмите две пробы земли из лунки глубиной в 25 сантиметров, поместите в разные емкости. Одну пробу полейте уксусом. Если пойдет шипение и появятся пузырьки, то это указывает на щелочную реакцию. Теперь разведите столовую ложку соды в стакане воды и полейте этим раствором вторую пробу. Наличие пузырьков и шипения указывает на закисленность. Если обе пробы повели себя хорошо, и реакции на поливы не было, у вас хорошая земля, с нормальным уровнем щелочи и кислоты.
- Нашинкуйте красную капусту и прокипятите ее в воде, пока не получится фиолетовый бульон. В него поместите грунт, взятый из лунки (глубина 25 сантиметров), взболтайте. Если отвар осветлился до розового — повышена кислотность, если изменил цвет до зеленого или синего — повышена щелочь.
- По несколько листов вишни и смородины поместите в небольшое количество кипятка на 15 минут. После этого всыпьте туда грунт. Раствор зеленый — нейтральная почва, синий — закисленная, красный — щелочная.
Все эти показания будут верны, но вам не удастся узнать, насколько закислена почва, или насколько в ней превышает норму щелочь. Именно для точных показаний произведен измеритель кислотности почвы. Помимо этого, он покажет температуру, освещенность и прочие параметры.
Источник