- ИЗМЕРИТЕЛЬ ЁМКОСТИ ВЫСОКОЙ ТОЧНОСТИ
- Принципиальная схема точного измерителя конденсаторов
- Измеритель ёмкости в действии
- Измеритель емкости конденсаторов
- Как измерить емкость конденсатора своими руками
- Обозначения на конденсаторах
- Вычисления с помощью формул электротехники
- Схема измерения
- Измерительные приборы
- Самодельный С — метр
- Конструкция и детали
- Видео по теме
ИЗМЕРИТЕЛЬ ЁМКОСТИ ВЫСОКОЙ ТОЧНОСТИ
При использовании тестера ёмкости в цифровом мультиметре вскоре становится очевидным, что они хорошо работают лишь с большими значениями, что на самом деле не особо полезно, поскольку большие конденсаторы обычно хорошо обозначены и не критичны в номинале. Маленькие, в диапазоне пико- и нанофарад — это совсем другое дело. Там чаще всего крошечные загадочные маркировки, если они вообще есть, и непоследовательные показания обычного цифрового мультиметра, а ведь именно там нужна высокая точность. Поэтому пришлось собрать ёмкостемер с возможностью считать значение до третьего знака и ёмкость от нескольких пикофарад со стабильными, повторяемыми при перепроверках результатами.
Принципиальная схема точного измерителя конденсаторов
Схема — сама простота: шесть конденсаторов, шесть резисторов, PIC16F628 и ЖК-дисплей 2×16.
В оригинале предлагается для аккумулятора использовать стабилизатор на 5 вольт. Но вы можете переделать это под литиевое аккумуляторное питание с инвертором.
Схема достаточно проста, чтобы ее можно было собрать за вечер. Когда устройство впервые включается, оно считывает внутренний конденсатор 270 пФ, который показывал на обычном ёмкостеметре 210 пФ, при реальных 274 пФ (оцените разницу погрешности).
Реально очень доволен результатами. Использовал резистор 1% для 10 кОм, но 1 кОм был всего 5%. Для большей точности 10K или 1k5 между RA3 и RA2 можно подобрать с помощью подстроечников. Но даже точность в исходном состоянии собранного устройства более чем соответствует потребностям.
Измеритель ёмкости в действии
Сначала немного беспокоила точность, так как большинство имеющихся конденсаторов емкостью 1 мкФ показывали более низкие значения. Но по мере того, как шло тестирование, уверенность росла. Майларовые были лучшими из-за того, что почти соответствовали значению на этикетке, а электролитические — худшим. Во многом это связано с производством с низким допуском, поэтому многие из испытанных конденсаторов емкостью 1 мкФ имеют ёмкость на 10-20% ниже.
В работе для питания используется адаптер 9 вольт при 200 мА тока потребления. Так как был небольшой нагрев, снял микросхему-регулятор с платы, вырезал в торце коробки окно с алюминиевой пластиной радиатора и прикрутил стабилизатор к нему.
Теперь тепло отводится за пределы корпуса, что намного лучше в плане стабильности работы измерителя. Вот прошивка для микроконтроллера.
Источник
Измеритель емкости конденсаторов
В статье описаны схема и конструкция простейшего измерителя емкости конденсаторов от единиц пикофарад до десяти микрофарад. В качестве измерительной головки применен тестер ТЛ-4 или любой цифровой. Прибор используется более 10 лет. Приведены рисунок печатной платы и рекомендации по настройке.
По мере того как у радиолюбителя накапливается опыт, начинают четко прослеживаться две тенденции. С одной стороны, интуиция подсказывает пути решения многих задач без использования большинства измерительных приборов, достаточно тестера и . отвертки, С другой стороны, становится очевидным, что наличие хотя бы простейших измерительных приборов значительно упрощает работу. Появляется желание (и возможность) произвести не только ремонт, но и исследование. В настоящее время в продаже появилось большое количество простейших цифровых тестеров, доступных радиолюбителям по цене. Одновременно со стрелочным ТЛ-4 они уверенно входят в практику. Другие типы контрольно-измерительных приборов более дорогостоящие, поэтому применяются в практике реже. Ниже приводится описание схемы и конструкции простейшего измерителя емкости конденсаторов, Хотя он был изготовлен более 10 лет назад, но с успехом используется в домашней лаборатории и сейчас.
Конструкция выполнена на двух микросхемах таймеров 3E555N (аналог КР1006ВИ1) — рис.1. Аналогичная схема того времени [1] содержала ошибки и требовала доработки. На DA1 выполнен задающий мультивибратор. В зависимости от требуемого поддиапазона измерений емкости конденсаторов (пФ/мкФ) переключателем SA1 выбирают частоту мультивибратора.
На DA2 выполнен ждущий мультивибратор. В зависимости от требуемого поддиапазона измерений емкости конденсаторов (пФ/мкФ) переключатели SA2-SA5 обеспечивают выбор предела измерений (100 пф, 1000 пф, 10 нФ/1 мкФ, ЮОнФ/10 мкФ). Конденсаторы С2, СЗ могут быть и большей емкости. На работу устройства это не влияет. Цепочка R10,VD1,VD2 является простейшим ограничителем напряжения. Она предотвращает сильные зашкаливания стрелки прибора при неправильно выбранном пределе измерений. Сопротивление резистора R11 выбирают при настройке с учетом сопротивления микроамперметра. У тестера ТЛ-4 сопротивление головки составляет около 987 Ом. Резистором R13 устанавливают стрелку прибора на нуль перед измерением. В авторском варианте схема питается от источника питания цифровых микросхем (+5 В), можно использовать любые блоки питания напряжением до 15В.
Настройка. Подбору подлежат сопротивления резисторов R3-R9, а в некоторых случаях и R11. Первоначально подключаем к схеме микроамперметр на 100 мкА (гнезда РА). На этом пределе измерений проще всего использовать ТЛ-4 Переключателем SA1 выбираем предел измерений прибора «мкФ» При этом в работе участвует резистор R2. Нажимаем кнопку переключателя SA5, а ко входу прибора «Сх» подключаем любой конденсатор емкостью около 10 мкФ. Для обеспечения большой точности настройки прибора желательно подготовить несколько конденсаторов с заранее . проверенной емкостью. Их величины не имеют принципиального значения. Важно только, чтобы их значения находились в пределах под-диапозонов. Автор использовал произвольно выбранные и заранее проверенные по емкости конденсаторы. 9,7 мкФ (К50-16, 10 мкФ), 0,94 мкФ (КМ-6, 1 мкФ), 96 нФ (КМ-60, 1мкФ), 9500пФ (КМ5, 10 нФ), 930 пФ (КСО-1, 910 пФ), 98 пФ (КД-1 100пФ). Как было сказано выше, первым подключаем конденсатор емкостью 9,7 мкФ. Подбирая сопротивление резистора R9, добиваемся отклонения стрелки прибора ТЛ-4 на 97 делений по шкале 100 мкА. Для этого не время настройки временно заменяем постоянные резисторы R5-R9 подстроенными. Измерив сопротивление подстроечного резистора, заменяем его постоянным. Далее переключатель SA4 устанавливаем на измерение емкостей до 1 мкФ. При этом, естественно, SA5 отключаем.
Подключив на вход прибораконденсатор емкостью 0,94 мкФ и изменив сопротивление резистора R8, добиваемся отклонения стрелки ТЛ-4 на 94 деления (мкА). Переключаем SA1 в положение «пФ» При этом в работе участвуют резисторы R3, R4. Замкнув SA5, подключаем ко входу «Сх» конденсатор 96 нФ. Для того чтобы стрелка прибора установилась на 96 делений (мкА), подбираем сопротивление резистора R3. Замкнув SA4, подключаем ко входу «Сх» конденсатор емкостью 9500 пФ. Сейчас прибор должен показать деление 95 (мкА) Включаем SA3, а ко входу прибора, подключаем конденсатор емкостью 930 пФ. Чтобы микроамперметр показал 93 деления (мкА), подбираем сопротивление резистора R7. Аналогично на нижнем пределе измерений прибора (включаем SA2) и при подключенном ко входу конденсаторе емкостью 98 пФ изменяем сопротивление резисторов R5, R6 (добиваемся отклонения стрелки прибора на 98 делений). Практически настройка закончена. В ряде спучаев для облегчения подборе сопротивлений (для уменьшения их количества) можно несколько изменить сопротивление резистора R11. При этом, естественно, изменяются настройки всех поддиапазонов прибора. Целесообразно проверить, как влияет величина напряжения источника питания схемы на точность измерений. Как было сказано выше, можно вместо стрелочного прибора использовать цифровой. Для этого достаточно к выходным гнездам «РА» подключить резистор с эквивалентным стрелочному прибору сопротивлением. В данном случае это могут быть, например, два параллельно соединенных резистора МЛТ-0,25-1 кОм и 75 кОм. Их эквивалентное сопротивление около 987 Ом. Цифровой тестер, например, М830В включаем в режим измерения малых напряжений.
Печатная плата прибора показана на рис. 2, а расположение элементов — на рис.3. При этом резисторы R3, R12 выделены цветом, что подчеркивает их расположение со стороны печатной платы. Сама плата разработана для размещения в пластмассовой коробке от ЗИП промышленного прибора. Следует обратить внимание на то, что в зависимости от расстояния между входными гнездами прибора существует небольшая паразитная входная емкость (около 10 пФ), поэтому на пределе «100 пф» ее будет показывать прибор даже без подключения ко входу измеряемого конденсатора.
1. Amaterske radio. — 1988 — № 1
Е.Л. Яковлев, г. Ужгород, РАДИОАМАТОР № 12, 2001
Источник
Как измерить емкость конденсатора своими руками
Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.
Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.
Обозначения на конденсаторах
Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.
Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).
Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.
Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.
Вычисления с помощью формул электротехники
Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.
Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.
Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.
Схема измерения
Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.
Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.
Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.
Измерительные приборы
Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.
В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.
В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.
Самодельный С — метр
Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.
Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.
Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.
Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.
При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.
Конструкция и детали
R1, R5 6,8k R12 12k R10 100k C1 47nF
R2, R6 51k R13 1,2k R11 100k C2 470pF
R3, R7 68k R14 120 C3 0,47mkF
R4, R8 510k R15 13
Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.
Вариант печатной платы и расположение компонентов
Видео по теме
Источник