Измеритель для аккумулятора своими руками

Измеритель ёмкости аккумуляторов (С линейным стабилизатором)

В этой статье мы поговорим об одном из способов практического применения электромеханических часов в радиолюбительской практике. В одной из статей мы собирали схему питания и управления для таких часов, а в другой мы мотали электромагнитную катушку для этой схемы. Здесь же мы рассмотрим как можно очень просто и точно измерить емкость литий-ионного аккумулятора с применением электромеханических часов. Ранние статьи Вы можете посмотреть по ссылкам:

Преимущество электромеханических часов в том, что после пропадания питания стрелки часов показывают время, когда это произошло. На самом деле в устройстве можно применить любые электромеханические часы, которые после остановки показывают время, которое было при пропадании напряжения питания. Основой устройства является линейная электронная нагрузка, задающая постоянный стабильный ток потребления. В данном случае выбран ток нагрузки 500 мА, что бы можно было измерять емкость небольших аккумуляторов. Если планируется измерять емкость только мощных источников, то нужно будет увеличить ток нагрузки, так как в противном случае придется очень долго ждать и шкалы устройства может быть недостаточной для измерения. Для точного же измерения емкости аккумуляторов до 1000 мА*час не следует превышать указанное значение тока нагрузки. В перспективе можно сделать переключатель, но он будет вносить некоторую погрешность, и поэтому я отказался от него.

Данное устройство обладает следующими параметрами:

Технические характеристики устройства:

  • Напряжение измеряемого аккумулятора
  • Предел измерения емкости
  • Разрядный нагрузочный ток
  • Погрешность измерения
  • Индикация измеряемого значения
  • Температура окружающей среды
  • 3,7 Вольт
  • до 6 А*час
  • 500 mA
  • 5 %
  • шкала
  • 5 — 45 °C

Предел измерения с меньшей стороны обуславливается погрешностью, а с высшей стороны шкалой, размером в 12 часов. Погрешность зависит от разрешения шкалы и от стабильности нагрузочного тока. А за 12 часов с током нагрузки 500 мА можно измерить емкость аккумулятора до 6000 мА*час.

Рассмотрим блок-схему и принцип работы устройства:

Напряжение полностью заряженного аккумулятора через контроллер разряда подается на электронную нагрузку и на схему питания и управления электромеханических часов. После запуска механизма часов они начинают отсчет времени и происходит разряд аккумулятора заданным стабильным током. Все это время светится светодиод, сигнализирующий о работе устройства и о процессе разрядки аккумулятора. При достижении напряжения на аккумуляторе своего нижнего предельного значения, контроллер разряда обесточивает всю схему, светодиод гаснет напоминая о конце процесса измерения, часы останавливаются и показывают емкость данного аккумулятора. Так как емкость определяется по формуле

Е [А * час] = I [А] х T [час]

а потребляемый стабильный ток в нашем случае равен 500 мА или что то же самое 0,5 А, то аккумулятор емкостью в 1 А*час полностью разрядится за 2 часа и двенадцатичасовой шкалы часов хватит максимум на аккумулятор с емкостью 6 А*час.

Контроллер разряда отключает нагрузку при снижении напряжения аккумулятора ниже определённого значения. Он взят из аккумулятора мобильного телефона Samsung с напряжением 3,7 В и представляет из себя плату защиты с порогами отключения цепи 2,4-4,2 В..

Обязательно нужно измерить напряжение отсечки, при котором он будет отключать нагрузку. Оно должно быть в районе 2,4 — 3,0 Вольта. Как правило у таких контроллеров общим является плюс питания, а цепь минуса управляется переходом полевого транзистора.

Читайте также:  Защита датчика эхолота от повреждений своими руками

В качестве электронной нагрузки взят линейный стабилизатор тока, у которого в отличие от импульсного и входной и выходной ток одинаков и стабилизирован в широком пределе напряжений. Нагрузкой стабилизатора тока является низкоомный резистор, хотя при надлежащем отводе тепла от силового управляющего транзистора можно и вообще отказаться от резистора и просто замкнуть выход.

Часы можно использовать любые электромеханические скорректировав питающее напряжение и доведя его до нужного значения. Так как большинству часов необходимо напряжение 1,5 В, а напряжение исследуемого аккумулятора будет меняться от 2,4 до 4,2 В то понадобиться простой стабилизатор напряжения для питания часов. Я использовал доработанные часы «Янтарь» со встроенным стабилизатором, которые мы ремонтировали в предыдущей статье.

Принципиальная схема получившегося измерителя емкости представлена на рисунке.

Напряжение с исследуемого полностью заряженного аккумулятора через предохранитель подается на контроллер разряда, который при подключении аккумулятора закрыт и не пропускает ток. Параллельно его входу подключен обратно смещённый диод, который защищает устройство от переполюсовки, во время которой он проводит ток в прямом направлении и сжигая предохранитель обесточивает цепь. Кратковременным нажатием кнопки «пуск» контроллер разряда запускается и подает напряжение на часы и электронную нагрузку. Предварительно обнуленные часы начинают отсчет времени, а электронная нагрузка разряжает аккумулятор заданным стабильным током. В зависимости от устройства часов может понадобится одновременный запуск их механизма. В моем случае необходимо предварительно установить стрелки на нулевую отметку и затем запустить маятник часов.

Так же в моих часах установлен светодиод подсветки шкалы одновременно сигнализирующий о работе устройства.

Электронная нагрузка представляет из себя линейный стабилизатор тока на германиевых транзисторах прямой проводимости. Транзистор Q1 стабилизирует напряжение на базе составного транзистора из элементов Q2 и Q3. В цепь эмиттера управляющего транзистора Q3 включен резистор R2, с которого напряжение отрицательной обратной связи подается на базу транзистора Q1. Подбором этого резистора осуществляется установка нужного тока стабилизации измеряя его в разрыве КТ1. Конденсатор C1 блокирует питание по высокой частоте шунтируя возможные помехи и наводки предотвращая некорректную работу устройства.

Рисунок платы с навесным монтажом представлен ниже:

Между выводами «-bat» и «-clock» подключена кнопка пуска. На выводы «+bat» и «-bat» подается напряжение с исследуемого аккумулятора. С выводов же «-clock» и «+clock» подается питание на электромеханические часы для измерения. Плата контроллера разряда приклеивается на двусторонний скотч. Управляющий транзистор Q3 ставится на радиатор площадью 10-12 см 2 который винтами крепится к основной плате.

Под это устройство так же разработана печатная плата, вид которой сверху и снизу показан на рисунках:

Я начертил шкалу для замены стандартного циферблата часов. Привожу вид этой шкалы, а ниже прилагаю вариант для печати в формате PDF.

Внутренняя шкала для часовой стрелки разбита на шесть основных делений по 1000 мА*час с промежуточными делениями по 500 мА*час и делениями между ними по 100 мА*час. Внешняя шкала для минутной стрелки и каждое большое деление показывает 100 мА*час с промежуточными маленькими делениями по 10 мА*час. Так же прилагаю исходный файл шкалы для тех, кому нужно будет подогнать размеры или внести изменения.

Вот так выглядит напечатанная шкала:

Далее я приклеил ее поверх циферблата часов с помощью тонкого двойного скотча:

Вот так это выглядит в собранном виде:

Сама плата устройства из за размеров радиатора не поместилась в корпус часов. Ее я установил в перерезанную пластиковую бутылку и вывел провода через горлышко подключив по назначению:

В качестве предохранителя я использовал отрезок медного провода диаметра 0,1 мм в эмалевой изоляции. Настройка устройства заключается в установке потребляемого тока в контрольной точке КТ1 подбором сопротивления резистора R2. Этот резистор я сделал из нихромовой проволоки и подбором ее длины добился нужного показания амперметра. Вы же можете поставить резистор немного большего сопротивления, например 0,33 Ом, и подключая параллельно другие резисторы с сопротивлением 1-10 Ом установить нужный ток потребления.

Читайте также:  Как сделать кирпичный цоколь своими руками

Схема показала довольно хорошую стабильность при изменении температуры и напряжения питания. С помощью данного устройства также можно измерять ёмкость «power bank»-ов с напряжением 5 Вольт.

Видео:

Источник

Тестер ёмкости автомобильного аккумулятора (ATmega8A + LM2575). Готовимся к зиме

Содержание / Contents

↑ Схема тестера ёмкости АКБ

↑ Как работает наш тестер АКБ?

При подключении клемм на АКБ питание поступает на преобразователь, собранный на микросхеме LM2575-5 и питает микроконтроллер ATmega8A.
Контроллер считывает напряжение на аккумуляторе и если напряжение выше 11в — включает реле К1 (RL1) подключая разрядную нагрузку (2 лампы Н4).

Ток разряда (10 А) поддерживается регулятором на полевом транзисторе и операционном усилителе, в качестве шунта используется резистор 0,1 Ом 10 Вт.
На ЖК-дисплее отображается ток разряда, напряжение на аккумуляторе, текущее время разряда и предыдущее измерение в А/ч.

Ток разряда на дисплей я вывел не от дурной головы (он стабилен и всегда 10 А), при настройке прибора, выяснилось, что проводники мультиметра очень серьёзно искажают результат измерения, пришлось ввести измерение тока в сам прибор и выполнять настройку по дисплею.

После снижения напряжения АКБ до 10,5 В, нагрузка отключается и срабатывает программный блинкер, не позволяющий прибору продолжить измерение после частичного восстановления напряжения на батарее и результат измерения выводится на дисплей.

В программу введена коррекция на погрешность измерения по собственному потреблению и остаточной ёмкости.

↑ Сборка тестера АКБ




↑ Важно!

5. Все номиналы деталей указаны на ПП.

↑ Итого

Прибор тестировался на СТО в аккумуляторном цехе на новых и «б/у» аккумуляторах. Результатами ребята остались довольны и уговорили меня оставить прибор им в постоянное пользование. Пришлось мне собирать второй для себя.

↑ Файлы

Исходники и прошивка: ▼ akb-v3.zip 90,21 Kb ⇣ 197
Печатная плата в ЛэйАут: ▼ tester-akb.zip 144,03 Kb ⇣ 184

Лёгкой вам зимы!

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

Источник

Простой тестер ёмкости аккумуляторов на Arduino

В последнее время я начал замечать, что мой смартфон стал разряжаться быстрее. Поиски программного «пожирателя» энергии плодов не принесли, поэтому стал задумываться, не пришло ли время заменить АКБ. Но абсолютной уверенности в том, что причина в батарее не было. Поэтому прежде чем заказывать новый аккумулятор решил попробовать измерить реальную емкость старого. Для этого было решено собрать простой измеритель емкости АКБ, тем более что идея эта вынашивалась уже давно – уж очень много батареек и аккумуляторов окружает нас в повседневной жизни, и было бы неплохо иметь возможность время от времени тестировать их.

Сама идея, лежащая в основе работы устройства, крайне проста: есть заряженный аккумулятор и нагрузка в виде резистора, нужно лишь измерять ток, напряжение и время в ходе разряда АКБ, и по полученным данным рассчитать его емкость. В принципе, можно обойтись вольтметром и амперметром, но сидеть за приборами несколько часов удовольствие сомнительное, поэтому намного проще и точнее можно сделать это используя регистратор данных. Я в качестве такого регистратора использовал платформу Arduino Uno.

С измерением напряжения и времени в Arduino проблем нет – есть АЦП, но чтобы измерить ток нужен шунт. У меня появилась идея использовать сам нагрузочный резистор в качестве шунта. То есть, зная на нем напряжение и предварительно измерив сопротивление, мы всегда можем рассчитать ток. Поэтому простейший вариант схемы будет состоять лишь из нагрузки и АКБ, с подключением к аналоговому входу Arduino. Но было бы неплохо предусмотреть отключение нагрузки по достижению порогового напряжение на батарее (для Li-Ion это обычно 2,5-3В). Поэтому я предусмотрел в схеме реле, управляемое цифровым пином 7 через транзистор. Конечный вариант схемы на рисунке ниже.

Читайте также:  Как сделать точилку для карандашей своими руками

Все элементы схемы я разместил на кусочке макетной платы, которая устанавливается прямо на Uno. В качестве нагрузки использовал спираль из нихромовой проволоки толщиной 0,5мм, имеющей сопротивление около 3 Ом. Это дает расчетное значение тока разряда 0,9-1,2А.

2. Измерение тока

Как было сказано выше ток рассчитывается исходя из напряжения на спирали и её сопротивления. Но стоит учесть, что спираль нагревается, а сопротивление нихрома довольно сильно зависит от температуры. Чтобы компенсировать ошибку я просто снял вольт-амперную характеристику спирали, используя лабораторный блок питания и давая ей прогреться перед каждым измерением. Далее вывел в Excel уравнение линии тренда (график ниже), которое дает довольно точную зависимость i(u) с учетом нагрева. Видно, что линия не прямая.

3. Измерение напряжения

Поскольку точность данного тестера напрямую зависит от точности измерения напряжения, я решил уделить этому особое внимание. В других статьях уже неоднократно упоминали метод, позволяющих наиболее точно измерять напряжение контроллерами Atmega. Повторю лишь вкратце – суть состоит в определении внутреннего опорного напряжения средствами самого контроллера. Я пользовался материалами данной статьи.

Код не представляет из себя ничего сложного:

Каждые 5 секунд данные о времени, напряжении батареи, токе разряда, текущей емкости в мАч и ВтЧ, а также напряжении питания передаются в последовательный порт. Ток рассчитывается по полученной в п. 2 функции. По достижении порогового напряжения Voff тест прекращается.
Единственным, на мой взгляд, интересным моментом в коде я бы выделил использование цифрового фильтра. Дело в том, что при считывании напряжения значения неизбежно «пляшут» вверх-вниз. Сначала я пытался уменьшить этот эффект просто сделав 100 измерений за 5 секунд и взяв среднее. Но результат по-прежнему меня не удовлетворил. В ходе поисков я наткнулся на такой программный фильтр. Работает он похожим образом, но вместо усреднения он сортирует все 100 значений измерений по возрастанию, выбирает центральные 10 и высчитывает среднее из них. Результат меня впечатлил – флуктуации измерений полностью прекратились. Я решил использовать его и для измерения внутреннего опорного напряжения (функция readVcc в коде).

Данные из монитора последовательного порта в несколько кликов импортируются в Excel и выглядят следующим образом:

Далее легко построить график разряда АКБ:

В случае с моим Nexus 5 заявленная ёмкость аккумулятора BL-T9 – 2300 мАч. Измеренная мной – 2040 мАч при разряде до 2,5 В. В реальности контроллер вряд ли позволяет сесть батарее до такого низкого напряжения, скорее всего пороговое значение 3В. Ёмкость в этом случае 1960 мАч. Полтора года службы телефона привели к просадке емкости примерно на 15%. С покупкой новой АКБ было решено повременить.
С помощью данного тестера было разряжено уже несколько других Li-Ion аккумуляторов. Результаты выглядят очень реалистично. Измеренная емкость новых АКБ совпадает с заявленной с отклонением менее 2%.
Данный тестер подойдет и для металл-гидридных пальчиковых аккумуляторов. Ток разряда в этом случае составит около 400 мА.

Источник

Оцените статью