Измеритель электромагнитного излучения своими руками

Делаем высокочувствительный детектор электромагнитного поля

Простой в сборке, но высокочувствительный, детектор электромагнитного поля на Arduino

Это простое устройство способно обнаруживать даже очень слабые электромагнитные поля. Относительная напряженность поля отображается в графическом виде на ЖК-индикаторе, дополнительно прибор сигнализирует звуковым зуммером и светодиодом (Рисунок 1).

Рисунок 1. Внешний вид детектора электромагнитного поля.

Схема соединений компонентов прибора в среде Fritzing изображена на Рисунке 2. (Схема в более высоком разрешении доступна для скачивания в разделе загрузок). Как видно на рисунке, схема очень проста и состоит из платы Arduino Nano, двустрочного ЖК-индикатора, зуммера, светодиода, переключателя и батареи питания 9 В.

Рисунок 2. Принципиальная схема высокочувствительного детектора
электромагнитного поля.

Основой прибора является плата Arduino Nano. В качестве датчика используется отрезок медного провода диаметром 1.5 мм, но вы можете использовать любой тип провода. Чувствительность прибора можно регулировать программно (в исходном коде), а также путем изменения номинала резистора, включенного между землей и аналоговым входом A0. Можно предусмотреть в конструкции несколько резисторов и подключать их в схему с помощью переключателя. В авторском варианте с помощью переключателя выбирается один из двух резисторов и, соответственно, степень чувствительности прибора. Таким образом, прибор можно откалибровать, сравнивая его показания с промышленным решением.

Светодиод подключен к выходу D10, звуковой зуммер к выходу D9. ЖК индикатор 16×2 подключается к плате Arduino по параллельному 4-битному интерфейсу. Для регулировки контрастности индикатора используется подстроечный резистор.

Программная часть прибора (скетч Arduino) представляет собой комбинацию двух Arduino-проектов: из проекта измерителя уровня громкости на Arduino KTAudio используется часть для работы с ЖК-индикатором, а из проекта детектора электромагнитного поля Aaron ALAI EMF Detector используется часть для работы с сенсором. Автор внес некоторые коррективы для повышения стабильности работы устройства. Скетч доступен для скачивания в разделе загрузок.

На видео ниже видно, что прибор может легко обнаруживать электромагнитные поля, создаваемые скрытыми силовыми кабелями электрической сети в доме, даже если они не подключены к потребителю. Электромагнитное поле от старого ЭЛТ-монитора может быть обнаружено на расстоянии 3 м и более.

Все компоненты прибора можно разместить в небольшом корпусе (Рисунок 3).

Рисунок 3. Вариант расположения компонентов детектора электромагнитного
поля в корпусе.

Загрузки

Перевод: Vadim по заказу РадиоЛоцман

Источник

НЕОБЫЧНЫЙ ДЕТЕКТОР ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ

Это интересное устройство позволяет услышать мир электромагнитного излучения, что нас окружает. Оно преобразует колебания высокой частоты излучения, генерируемого разнообразными электронными устройствами в слышимую форму. Можно использовать его возле компьютеров, планшетов, мобильных телефонов и т. д. Благодаря ему вам удастся услышать действительно уникальные звуки, создаваемые работающей электроникой.

Читайте также:  Воздушный зефир своими руками

Принципиальная электросхема

Схема предполагает реализацию данного эффекта с как можно наименьшим числом радиоэлементов. Дальнейшие улучшения и исправления лежат уже на вашем усмотрении. Некоторые значения деталей вы можете подобрать для своих потребностей, другие являются постоянными.

Процесс сборки

Сборка предполагает использование макетной платы размером не менее 15 x 24 отверстия, и особое внимание обращается на расположение элементов на ней. На фотографиях показано рекомендуемое расположение каждого из радиоэлементов и какие связи между ними выполнить. Перемычки на печатной плате можно выполнить из фрагментов кабеля или отрезанных ножек от других элементов (резисторы, конденсаторы), которые остались после их монтажа.

Сначала надо впаять катушки L1 и L2. Хорошо отодвинуть их друг от друга, что даст нам пространство и увеличит эффект стерео. Эти катушки являются ключевым элементом схемы — они ведут себя как антенны, которые собирают электромагнитное излучение из окружающей среды.

После впайки катушек можно установить конденсаторы C1 и C2. Их емкость составляет 2,2 мкФ и определяет нижнюю частоту среза звуков, которые будут услышаны в наушниках. Чем выше значение ёмкости, тем ниже звуки воспроизводящиеся в системе. Большая часть мощного электромагнитного шума лежит на частоте 50 Гц, так что есть смысл его отфильтровать.

Далее припаиваем резисторы по 1 кОм — R1 и R2. Резисторы эти, вместе с R3 и R4 (390 кОм) определяют усиление операционного усилителя в схеме. Инвертирование напряжения не имеет в нашей системе особого значения.

Виртуальная масса — резисторы R5 и R5 с сопротивлением 100 кОм. Они являются простым делителем напряжения, который в данном случае будет делить напряжение 9 V на половину, так что с точки зрения схемы питается м/с напряжением -4,5 V и +4,5 V по отношению к виртуальной массе.

Можно поставить в панельку операционный усилитель любой со стандартными выводами, например OPA2134, NE5532, TL072 и другие.

Подключаем аккумулятор и наушники — теперь мы можем использовать этот акустический монитор для прослушки электромагнитных полей. Батарею можно приклеить к плате скотчем.

Дополнительные возможности

Что можно добавить, чтобы увеличить функциональность? Регулятор громкости — два потенциометра между выходом из схемы и гнездом для наушников. Выключатель питания — сейчас схема включена все время, пока не отсоединится батарейка.

При испытаниях оказалось, что устройство очень чувствительно на источника поля. Вы можете услышать, например, как обновляется экран в мобильном телефоне, или как красиво поет кабель USB во время передачи данных. Приложенный к включенному громкоговорителю работает как обычный и вполне точный микрофон, который собирает эл-магнитное поле катушки работающего динамика.

Хорошо ищет кабеля в стене, на манер трассоискателя. Только надо поднять НЧ, увеличив все 4 ёмкости до 10 мкФ. Недостатком является довольно большой шум и ещё сигнал слишком слабый — нужен какой-то дополнительный усилитель мощности, например на PAM-8403.

Видео работы детектора ВЧ

Источник

Своими руками пассивный измеритель эми схема. Детектор электромагнитного излучения своими руками. Схемы самодельных устройств охраны и защиты информации

Хочу представить схему устройства, которое имеет чувствительность к высокочастотному электромагнитному излучению. В частности, его можно применить для индикации входящих и исходящих вызовов мобильного телефона. Например, если телефон находится на беззвучном режиме, то это устройство позволит быстрее заметить входящий звонок или SMS.

Читайте также:  Защитный кожух с пылеотводом своими руками

Все это помещается на монтажную плату длиной 7 см.

Большую часть платы занимает схема индикации.

Также здесь присутствует антенна.


Антенной может служить отрезок любого провода длиной не менее 15 см. Я сделал ее в виде спирали, похожую на катушку. Ее свободный конец просто припаян к плате, чтобы он не болтался. Было испробовано много разных форм антенны, но я пришел к выводу, что важнее не форма, а её длина, с которой вы можете поэксперементировать.

Давайте рассмотрим схему.


Здесь собран усилитель на транзисторах.
В качестве транзистора VT1 использован КТ3102ЕМ. Решил выбрать именно его, потому что он имеет очень хорошую чувствительность.

Все остальные транзисторы (VT2-VT10) это 2N3904.

Рассмотрим схему индикации: транзисторы VT4-VT10 здесь являются ключевыми элементами, каждый из которых включает соответствующий светодиод при поступлении сигнала. В роли транзисторов этой шкалы могут быть использованы любые, можно даже КТ315, но при пайке удобнее использовать транзисторы в корпусе ТО-92 из-за удобного расположения выводов.
Здесь использованы пороговые диоды (VD3-VD8), и поэтому в каждый момент времени светится только один светодиод, показывая уровень сигнала. Правда этого не происходит по отношению к излучению мобильного телефона, так как сигнал постоянно пульсирует с большой частотой, вызывая свечение почти всех светодиодов.


Количество, «светодиодно-транзисторных» ячеек не следует делать больше восьми. Номиналы базовых резисторов здесь одинаковые и составляет 1 кОм. Номинал будет зависеть от коэффициента усиления транзисторов, при использовании КТ315 следует тоже использовать резисторы на 1 кОм.

В качестве диодов VD1, VD2 желательно использовать диоды Шоттки, так как они имеют меньшее падение напряжения, однако все работает даже при использовании распространенного 1N4001. Один из них (VD1 или VD2) можно исключить, если индикация будет слишком зашкаливать.
Все остальные диоды (VD3 — VD8) это те же самые 1N4001, но можно попробовать использовать любые имеющиеся под рукой.

Конденсатор С2 — электролитический, его оптимальная емкость от 10 до 22 мкФ, он на доли секунды задерживает погасание светодиодов.

Номинал резисторов R13 И R14 зависит от потребляемого светодиодами тока, и будет лежать в пределе от 300 до 680 Ом, но номинал резистора R13 может быть изменен в зависимости от питающего напряжения или при недостаточной яркости светодиодной шкалы. Вместо него можно припаять подстроечный резистор и добиться желаемой яркости.

На плате имеется переключатель, который включает некий «турбо режим» и пропускает ток в обход резистора R13, вследствие чего увеличивается яркость шкалы. Я его использую при питании от батарейки типа крона, когда она подсаживается и шкала светодиодов тускнеет. На схеме переключатель не указан, т.к. он не обязателен.

Читайте также:  Для айпода своими руками

После подачи питания светодиод HL8 начинает гореть сразу и просто указывает на то, что устройство включено.

Питается схема напряжением от 5 до 9 Вольт.

Далее можно изготовить для него корпус, например из прозрачного пластика, а в качестве основания можно использовать фольгированный текстолит. Подключив антенну к металлизации платы, возможно удастся повысить чувствительность этого индикатора высокочастотных излучений.

Кстати, на излучение микроволновки он тоже реагирует.

Источник

Как сделать простой детектор электромагнитного поля

Электромагнитное поле. Мы буквально купаемся в нем, ведь любой электроприбор и даже сами провода домашней сети являются источниками этого поля. Невооруженным взглядом электромагнитное поле не увидеть, но вот с помощью приборов можно. И сегодня я расскажу и покажу как сделать простой детектор поля буквально из пары элементов, с помощью которого даже можно отыскать скрытую проводку.

Схема и подготовка материала

За основу я взял простейшую схему которая выглядит так:

Номинал резистора указан от 3 до 4.7 кОм и подбирается он экспериментальным образом. Идеальным вариантом будет установка регулируемого резистора на 5 кОм, который позволит выполнить точную настройку уже собранного детектора.

Чувствительный полевой транзистор n — канального типа в принципе подойдет практически любой, но чтобы не покупать его в магазине достаточно покопаться в своих запасах и найти, например, старую гарнитуру со встроенным микрофоном.

И, разобрав его, извлечь полевой транзистор 596 S.

А так же подготовьте небольшой кусок нетравленой печатной платы, паяльник, олово припой, канцелярский нож, светодиод, держатель для батареи и переключатель.

После того, как все готово можно приступать к сборке нашего с вами детектора.

Сборка детектора

Первым делом нужно подготовить плату. Так как нам с вами необходимо соединить всего лишь несколько деталей, то печатать дорожки и вытравливать плату нет никакого смысла. Поэтому берем плату и канцелярский нож и делаем следующую схему:

После этого, чтобы очистить область где будут припаиваться детали, берем обычную стерку и хорошо очищаем поверхность. А затем залуживаем места контактов.

Все, теперь начинаем припаивать элементы согласно выше представленной схеме. Единственное, когда будете припаивать полевой транзистор, нужно либо заземлить паяльник, либо выключить его из сети. Я просто хорошо разогрел его и на время припаивания выходов полевика, просто выключил паяльник.

А в остальном пайка не должна вызвать у вас затруднений. У меня не нашлось сопротивления на 3 кОм, поэтому я просто соединил два сопротивления на 1 кОм и 2 кОм последовательным образом. Как потом оказалось, 3 кОм оказалось недостаточно и пришлось допаять еще одно сопротивление. И все, наш прибор, регистрирующий электромагнитное поле, готов.

Работа прибора показана в следующем видео:

Заключение

Собрав прибор по этой схеме, вы получите миниатюрный прибор, с помощью которого вы сможете даже отыскать скрытую проводку в вашем доме. Если статья оказалась вам полезна или интересна, то оцените ее лайком и поделитесь в социальных сетях. Спасибо за ваше внимание!

Источник

Оцените статью