Измеритель емкости акб своими руками

Измеритель ёмкости аккумуляторных батарей

Это устройство предназначено для измерения ёмкости аккумуляторов и их батарей напряжением в заряжен­ном состоянии 1…25 В при разрядном токе 0,1… 10 А. Оно отличается от раз­работанных автором ранее [1,2] более точным измерением ёмкости за счёт того, что в процессе разрядки контро­лируется и учитывается текущее значе­ние разрядного тока. Измеряемая ём­кость может находиться в пределах от 0,001 до 65,536 А·ч.

Схема измерителя показана на рисунке. К нему подключают заряжен­ный аккумулятор (батарею), ёмкость ко­торого предстоит определить. Напряжение и разрядный ток аккумулятора измеряет АЦП микроконтроллера DD1. Значения этих величин отображаются в разрядах 8—10 (крайних правых) ЖКИ HG1 и сопровождаются буквами U для напряжения или I для тока в разряде 7 индикатора. Переключение отображае­мой величины выполняют нажатием и удержанием кнопки SB1.

Схема измерителя ёмкости аккумуляторных батарей

Процесс измерения ёмкости аккуму­лятора запускают нажатием на кнопку SB2 длительностью не менее 0,5 с. Если в этот момент напряжение аккумулято­ра больше 0,8 В, программа микроконт­роллера устанавливает на его выводе 11 (РА7) высокий логический уровень напряжения. Это открывает ключ на полевом транзисторе VT1, подключаю­щий к проверяемому аккумулятору на­грузочный резистор R1. Резистор R6 — датчик разрядного тока.

При начальном напряжении аккумуля­тора менее 0,8 В на выводе РА7 будет установлен низкий логический уровень и транзистор VT1 не откроется. Сигнализи­руя об этом, светодиод HL1 станет ми­гать с частотой 2 Гц. В разрядах 7—10 ин­дикатора будет выведена надпись «Еrr2».

В случае, если напряжение более 0,8 В, но измеренный ток разрядки пре­вышает 10 А, транзистор VT1 будет закрыт.

Светодиод начнёт мигать с частотой 8 Гц, а на индикаторе появится надпись «Еrr1». Как при слишком низком напряжении аккумулятора, так и при слишком боль­шом разрядном токе измерение ёмкости аккумулятора выполняться не станет.

О нормально идущем процессе из­мерения ёмкости свидетельствует ми­гание светодиода HL1 с частотой 0,5 Гц. При этом текущее количество электриче­ства, отданное аккумулятором в нагрузку, отображается в разрядах 1—5 индика­тора (крайних левых) в ампер-часах с тремя десятичными знаками после за­пятой. Незначащий ноль в разряде десят­ков ампер-часов программно гасится.

Сигналом завершения процесса из­мерения служит непрерывное свечение светодиода. По его окончании транзис­тор VT1 закрывается, а выведенное на индикатор отданное аккумулятором ко­личество электричества (его ёмкость) со­хранится на нём до выключения питания.

Алгоритм измерения следующий. При нажатии на кнопку SB2 к аккумуля­тору подключается нагрузка, измеряет­ся напряжение на ней, вычисляется напряжение, до которого нужно разря­дить аккумулятор (оно меньше началь­ного на 25 %), и измеряется ток разряд­ки по падению напряжения на резисторе R6. Если ток не превышает 10 А, то каж­дые 36 с (0,01 часа) выведенное на ин­дикатор значение отданного количества электричества увеличивается на 1/100 текущего значения разрядного тока.

Разрядный ток зависит от сопротив­ления нагрузочного резистора R1. Но­минал и мощность этого резистора выбирают в зависимости от типа прове­ряемого аккумулятора или их батареи. Для плавной регулировки тока здесь можно применить реостат. Максималь­ное падение напряжения на датчике тока не превышает 100 мВ.

Налаживание устройства сводится к калибровке его измерителей тока и напряжения по образцовым приборам. Сначала подборкой резистора R2 уста­навливают на индикаторе HG1 значе­ние, равное показанию образцового вольтметра. Затем, замкнув контакты кнопки SB1, подборкой резистора R6 устанавливают измеренное значение тока по образцовому амперметру.

Программа микроконтроллера напи­сана на языке ассемблера в среде раз­работки AVR Studio 4.19. Младший байт конфигурации микроконтроллера дол­жен быть запрограммирован равным 0хЕЕ, старший байт — 0x17.

Скачать архив к проекту (прошивка, исходник).

ЛИТЕРАТУРА

  1. Озолин М. Измеритель ёмкости акку­муляторов на микроконтроллере. — Радио, 2009, №3, с. 28,29.
  2. Озолин М. Цифровой измеритель ём­кости и внутреннего сопротивления аккуму­лятора. — Радио, 2012, № 3, с. 20.

Автор: М. ОЗОЛИН, с. Красный Яр Томской обл.
Источник: Радио №7, 2015

Источник

Автомат для разрядки и измерения реальной ёмкости аккумуляторов

Небольшая прелюдия…
Под моим покровительством находится парк из 70 компов, разных годов выпуска и состояния. Естественно на подавляющем количестве имеются источники бесперебойного питания (по тексту – ИБП). Организация бюджетная, денег конечно не дают, типа — делай, что хочешь, но должно всё работать. После коротких тестов с нагрузкой в виде лампочки на 150 Ватт выявил что 70% ИБП не держат нагрузку больше 1 минуты, ИБП фирмы АРС грешат контактами реле переключения (он переходит на АКБ, гудит-пищит, а на выходе полный ноль). Конечно никто мне не давал все ИБП проверить разом. Выход оказался прост: раз в пол года – год забирал компы на чистку, смазку, заодно и ИБП на тест и осмотр потрохов.

Читайте также:  Как сделать линоторакс своими руками

Конечно ИБП разных марок и мощностей (есть старичек на 600 Ватт 1992 года выпуска, АКБ родная сдохла этой осенью, до этого делал реанимацию 4 года назад). Если кто не в курсе в бытово-оффисных ИБП применяются АКБ разных типов, корпусов, напряжений и ёмкостей. Типовой представитель — это GP1272F2 (12 Вольт , 7 А/ч). Но попадаются и на 6В — 4,5 А/ч.

Цены на аккумуляторы часто превышаю половину цены нового ИБП. Да ещё в конторке (в которой подрабатываю) тоже скапливаются дохлые батарейки. Возник вопрос, а какова реальная ёмкость до и после поднятия из мусорной корзины, сколько минут работы можно ожидать от ИБП. И тут попалась на глаза статейка И. Нечаева в журнале «Радио» 2/2009 о подобном измерителе.
Конечно, некоторые моменты мне не понравились, такая вот я сволочь .
И так начнём-с…

Содержание / Contents

↑ Это оригинальная схема из статьи

ТТХ: ток разряда 50, 250, 500 ма, напряжение отсечки 2,5-27,5 Вольт .
Перечислю, что не понравилось: ток разряда максимальный всего 0,5а (да и ждать когда разрядится 7 ач не интересно), диапазон отсечки слишком широк и его легко сбить, на пуск через кнопку идёт весь ток, стабилизатор тока на полевике для светодиода это перебор, диод в управляющем выводе LM317 увеличивает требуемое падение на токовых резисторах до 1,8В и в случае пробоя 317 ходикам каюк.

Про ток разряда: у аккумов бывает что активная масса как бы запечатывается в намазке (не путать с сульфатацией), при этом подвижность электролита снижается и если разряжать его малым током, то он может отдать ёмкость полностью, а при установке в ИБП тест не пройдёт. Ну тогда надо разряжать его малым током и заряжать, т.е. лечить.
Модульность того, что у меня получилось, хороша тем что можно изготовить 2 и больше разрядных модуля (можно 1 и переключать токовые резисторы) разной мощности или даже типа и 2 отсекателя для 6-ти и 12-вольтовых батарей или 1 с переключателем.

↑ Фотки моего измерителя:

Это на 2 ампера. Так как R1 оказался больше 0,75 ом пришлось добавить 2 сопротивления (это R3, два в одном на фото) что бы ток был 2 ампера. Если кто то не заметил, прокладок между микрой с транзистором на радиатор нету. Можно конечно использовать и другую схему, типа как в радио 3/2007 стр. 34, только добавьте опорное напряжение.
Токовая и термозащита в 317 (настоящей) есть.

Ну и самая страшная часть, это отсекатель.

Супер 3D-монтаж, зато всего 3см кубических, на печатке будет гораздо крупнее. Полевик, если на 6В АКБ, то очень желательно с логическим управленим.
Данная часть почти не отличается от первоначальной, кнопка пуск перенесена с сток-исток на коллектор-эммитер, переменник заменён на фиксированный делитель, китайский сверхяркий светодиод через резистор.

Возможные вариации: верхнее плечо (по исходной схеме это R4) заменить на сопротивление + переменник, ограничив таким образом диапазон настройки (требуется когда ток разряда соизмерим с ёмкостью АКБ); возможны иные идеи.

Для формул Uref=2.5v для обычных 431, а для 431L оно равно 1.25v.

Отсекатель с фиксированным напряжением:

Формула для расчета: Uотс= Uref(1+R4/R5)
или R5=( Uотс- Uref)/( Uref*R4)

Отсекатель с регулируемым напряжением:

Формула для расчета: Uотс = Uref(1+(R4+R6)/R5)
или R5 = (Uотс- Uref) / (Uref*(R4+R6))

Но тут надо считать от переменника, на нём при разряде 0,1с должно падать (Uдельта) 1,15v для 6в акб и 2,30v для 12v акб.
Поэтому формулы преобразуются и расчет несколько иной.
Uмин смотрим в таблице ниже.
R5 = Uref * R6 / Uдельта
R4 = ((Uмин -Uref) * R5) / Uмин

Читайте также:  Как отремонтировать крестовину офисного кресла своими руками

Есть ещё схема отсекателя с регулируемым напряжением на 6 и 12 вольтовые батареи, но там расчет мудренее, можно просто поставить два делителя и переключатель с двумя группами которые будут коммутировать раздельные R4, R5.
Можно запихнуть в корпус ходиков, а под кнопкой блокировки будильника поставить кнопку старта.

Минусы: греется токовая нагрузка, часы надо самому в 00-00 ставить.
Плюсы: включил и ушел, пришел увидел и понял.

Напоследок маленькая табличка…

Видно плохо, но вроде понятно. А если не понятна табличка, то спрашивайте.

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Активная нагрузка с измерением емкости аккумулятора

Представляем проект самодельной активной электронной нагрузки. Сама по себе активная нагрузка не является чем-то особенным, но здесь расширение базы представляет собой микроконтроллер, используемый для измерения тока, напряжения и мощности и тестирования емкости любых аккумуляторов от 100 мА/ч до 99 А/ч с функцией автоматического отключения нагрузки от источника после достижения установленного напряжения разряда. Дополнительным действием микроконтроллера является управление скоростью вентилятора в зависимости от температуры радиатора.

Схема измерителя ёмкости АКБ с электронной нагрузкой

Работа базовой схемы активной нагрузки довольно проста — силовой транзистор последовательно соединен с резистором измерения мощности источника с источником питания (например, блоком питания, аккумулятором). Транзистор управляется сигналом ошибки, генерируемым в измерительном усилителе на основе сигнала напряжения, получаемого с измерительного резистора, и сигнала напряжения, подаваемого с потенциометра управления. Разница этих сигналов заставляет транзистор открываться или закрываться через измерительный усилитель для их выравнивания. Это влияет на величину тока, протекающего через транзистор, и, следовательно на ток, поступающий от проверяемого источника. Напряжение, пропорциональное току протекающему через него в соответствии с законом Ома, подается на измерительный резистор.

Конечно, эта базовая схема имеет много различных модификаций, например более одного силового транзистора, дополнительные управляющие транзисторы, MOSFET-транзистор вместо биполярных, улучшенные версии операционных усилителей и так далее.

В данном проекте использован самый простой вариант с одним полевым транзистором STW20NB50 в корпусе TO-247. Транзистор напрямую управляется сдвоенным операционным усилителем LM358, питаемым от одного напряжения 9 В. Измеряемое напряжение от силового резистора (2 параллельных резистора 0R1 5 Вт) подается через простой RC-фильтр на инвертирующий вход первого усилителя, а на неинвертирующий вход другого операционного усилителя для усиления напряжения перед передачей в микроконтроллер — измерение тока.

Напряжение двух последовательно соединенных потенциометров управления также подается на вход неинвертирующего первого усилителя, создание системы грубой и точной регулировки, поглощенной текущей нагрузкой. В первом ОУ генерируется сигнал ошибки, управляющий силовым транзистором. Транзистор работает линейно, что несколько необычно для MOSFET, но совершенно нормально в данном случае.

Внимание: эта схема активной нагрузки может не выдержать обратного подключения проверяемого источника питания!

Проект основан на микроконтроллере ATtiny26. Он управляется внутренним генератором с частотой 8 МГц, который при первых нескольких срабатываниях калибруется «вручную» методом проб и ошибок, изменяя параметр, введенный в регистр генератора OSCCAL в начале программы (несколько раз корректируя, компилируя и программируя). Хотя в схеме есть функция измерения емкости батареи, которая заключается в подсчете принятой нагрузки как функции времени, не считаем необходимым стабилизировать время с помощью кварца, поскольку это не лабораторное оборудование, и небольшие отклонения отсчитываемого времени (после калибровки генератора) мало влияет на результат измерения АКБ. Если кто-то хочет стабилизировать таймер кварцем — можете сделать и так.

Программа была написана полностью на ассемблере и занимает доступную память процессора, всего 2 КБ.

АЦП подаются через блокирующий конденсатор в конце AVCC и в качестве источника использования эталонного напряжения внутреннее напряжение 2,56 В. Измерения проводятся циклически каждые 200 мсек в основном цикле программы.

Чтобы просмотреть ток и напряжение с точностью до 0,01, точность обработки АЦП была программно увеличена с 10 до 12 бит. Без этой процедуры точность индикации напряжения в предполагаемом диапазоне 30 В составляла 30 В / 1023 (АЦП) =

0,03 В, что не очень.
Благодаря передискретизации до 12 бит точность показаний напряжения составила 30 В / 4095 (АЦП) Полезное: Высококачественный УНЧ для колонок

Читайте также:  Виды душевых поддонов своими руками

Давайте проверим, будет ли ток = 4 А в течение 10 часов, тогда что получится? 4 A х 36000 с = 144000 Ас -> 144000/3600 = 40 Ач.

Чтобы измерить емкость аккумулятора он должен быть подключен к нагрузке с минимальными грубыми и точными потенциометрами (отключение нагрузки) и с максимальным потенциометром регулировки напряжения отсечки. На дисплее должно отображаться напряжение на аккумуляторе, например, 12,15 В и ток без нагрузки. Единица напряжения должна быть записана как «V» (с заглавной буквой), если это маленькая буква «v», следует кратковременно нажать кнопку, чтобы активировать функцию отключения нагрузки, чтобы вернуться к большому «V».

Теперь отрегулируем напряжение отсечки для потенциометра, например, для 12-вольтовой кислотной батареи это будет полное напряжение разряда 10,20 В (1,7 В / элемент, разные источники могут давать немного разные размеры, особенно в зависимости от его производителя). Нажимаем долго (более 3 секунд) функциональную кнопку отключения нагрузки, пока буква «V» не изменится на маленькую «v». Поверните потенциометр напряжение до максимального значения и оставить уже — с изолирующей нагрузкой вернутся в режим ожидания.

Теперь достаточно установить желаемый ток нагрузки, желательно на 20 часов (обычно в соответствии с рекомендациями для кислотных АКБ), например, 2,5 А для аккумулятора 50 А/ч, и ждать сигнала завершения — пикание. В зависимости от состояния АКБ, это может занять несколько часов. Благодаря функции отключения нагрузки не нужно беспокоиться о том, чтобы пропустить момент полной разрядки и повредить аккумулятор — нагрузка отключится автоматически. На дисплее можем прочитать значение емкости и времени измерения, которое прошло.

Измерение емкости активируется автоматически после обнаружения тока не менее 50 мА без какой-либо операции нажатием кнопки и регулировкой напряжения отключения, описанных выше — они служат только для активации режима контроля напряжения и отключения нагрузки.

На одном из выходов процессора имеется передача от программного обеспечения USART со скоростью 9600 8N1 в односекундном цикле, в которую включена информация, идентичная показанной на дисплее в виде кодов ASCII. Вы можете отправить передачу данных, например, на компьютер через любой адаптер RS232-TTL / USB и прочитать информацию непосредственно на любом терминале, указав соответствующий COM-порт адаптера. Переданные данные включают в себя коды ASCII, управляющие терминалом, а именно коды CR + LF на концах линии и код CLRSCR для очистки экрана в начале каждой передачи, благодаря чему данные отображаются в окне терминала в фиксированном месте (прокрутка окна при получении данных не производится).

Микроконтроллер напрямую управляет буквенно-цифровым ЖК-дисплеем 2×16 в 4-битном режиме. Дисплей отображает 6 параметров,

  • в верхней строке: напряжение, ток, температура радиатора;
  • в нижней строке: мощность, мощность, время измерения.

В схеме есть несколько потенциометров. Они используются для коррекции измерений напряжения и тока, а также контрастности дисплея и для регулировки уровня тока нагрузки (грубой и точной), а также для установки напряжения отсечки для измерений А/ч.

Источник питания служит силовой трансформатор мощностью 3 Вт и напряжением 12 В. Стандартный встроенный стабилизатор в версии SMD обеспечивает напряжение 5 В для питания всей схемы, в то время как стабилизатор 9 В в корпусе TO-92 для операционного усилителя припаян со стороны дорожек, напряжение отфильтровано несколькими электролитическими конденсаторами и керамикой.

Электронная схема была разделена на две печатные платы: плату процессора с взаимодействующими цепями и плату нагрузки с транзистором и резисторами. Они разработаны так, что их можно разделить на две части или оставить как одну большую плату. В случае разделения платы соединяются с помощью коротких отрезков проводов, предпочтительно кабелей, и размещаются в корпусе так, чтобы они были как можно ближе друг к другу (как можно короче соединительные провода). Силовой транзистор присоединен к достаточно большому радиатору с вентилятором.

Вся схема была размещена в типичном металлическом корпусе от блока питания компьютера АТХ. На одной из стенок прикреплена лицевая панель с отверстием для дисплея. В дополнение к дисплею имеются также бананы-разъемы для подключения проверяемого источника и потенциометров регулировки. Благодаря тому, что это корпус от БП компьютера, тут уже есть разъем для сетевого 220 В шнура питания.

Источник

Оцените статью