Измеритель ёмкости аккумуляторных батарей
Это устройство предназначено для измерения ёмкости аккумуляторов и их батарей напряжением в заряженном состоянии 1…25 В при разрядном токе 0,1… 10 А. Оно отличается от разработанных автором ранее [1,2] более точным измерением ёмкости за счёт того, что в процессе разрядки контролируется и учитывается текущее значение разрядного тока. Измеряемая ёмкость может находиться в пределах от 0,001 до 65,536 А·ч.
Схема измерителя показана на рисунке. К нему подключают заряженный аккумулятор (батарею), ёмкость которого предстоит определить. Напряжение и разрядный ток аккумулятора измеряет АЦП микроконтроллера DD1. Значения этих величин отображаются в разрядах 8—10 (крайних правых) ЖКИ HG1 и сопровождаются буквами U для напряжения или I для тока в разряде 7 индикатора. Переключение отображаемой величины выполняют нажатием и удержанием кнопки SB1.
Схема измерителя ёмкости аккумуляторных батарей
Процесс измерения ёмкости аккумулятора запускают нажатием на кнопку SB2 длительностью не менее 0,5 с. Если в этот момент напряжение аккумулятора больше 0,8 В, программа микроконтроллера устанавливает на его выводе 11 (РА7) высокий логический уровень напряжения. Это открывает ключ на полевом транзисторе VT1, подключающий к проверяемому аккумулятору нагрузочный резистор R1. Резистор R6 — датчик разрядного тока.
При начальном напряжении аккумулятора менее 0,8 В на выводе РА7 будет установлен низкий логический уровень и транзистор VT1 не откроется. Сигнализируя об этом, светодиод HL1 станет мигать с частотой 2 Гц. В разрядах 7—10 индикатора будет выведена надпись «Еrr2».
В случае, если напряжение более 0,8 В, но измеренный ток разрядки превышает 10 А, транзистор VT1 будет закрыт.
Светодиод начнёт мигать с частотой 8 Гц, а на индикаторе появится надпись «Еrr1». Как при слишком низком напряжении аккумулятора, так и при слишком большом разрядном токе измерение ёмкости аккумулятора выполняться не станет.
О нормально идущем процессе измерения ёмкости свидетельствует мигание светодиода HL1 с частотой 0,5 Гц. При этом текущее количество электричества, отданное аккумулятором в нагрузку, отображается в разрядах 1—5 индикатора (крайних левых) в ампер-часах с тремя десятичными знаками после запятой. Незначащий ноль в разряде десятков ампер-часов программно гасится.
Сигналом завершения процесса измерения служит непрерывное свечение светодиода. По его окончании транзистор VT1 закрывается, а выведенное на индикатор отданное аккумулятором количество электричества (его ёмкость) сохранится на нём до выключения питания.
Алгоритм измерения следующий. При нажатии на кнопку SB2 к аккумулятору подключается нагрузка, измеряется напряжение на ней, вычисляется напряжение, до которого нужно разрядить аккумулятор (оно меньше начального на 25 %), и измеряется ток разрядки по падению напряжения на резисторе R6. Если ток не превышает 10 А, то каждые 36 с (0,01 часа) выведенное на индикатор значение отданного количества электричества увеличивается на 1/100 текущего значения разрядного тока.
Разрядный ток зависит от сопротивления нагрузочного резистора R1. Номинал и мощность этого резистора выбирают в зависимости от типа проверяемого аккумулятора или их батареи. Для плавной регулировки тока здесь можно применить реостат. Максимальное падение напряжения на датчике тока не превышает 100 мВ.
Налаживание устройства сводится к калибровке его измерителей тока и напряжения по образцовым приборам. Сначала подборкой резистора R2 устанавливают на индикаторе HG1 значение, равное показанию образцового вольтметра. Затем, замкнув контакты кнопки SB1, подборкой резистора R6 устанавливают измеренное значение тока по образцовому амперметру.
Программа микроконтроллера написана на языке ассемблера в среде разработки AVR Studio 4.19. Младший байт конфигурации микроконтроллера должен быть запрограммирован равным 0хЕЕ, старший байт — 0x17.
Скачать архив к проекту (прошивка, исходник).
ЛИТЕРАТУРА
- Озолин М. Измеритель ёмкости аккумуляторов на микроконтроллере. — Радио, 2009, №3, с. 28,29.
- Озолин М. Цифровой измеритель ёмкости и внутреннего сопротивления аккумулятора. — Радио, 2012, № 3, с. 20.
Автор: М. ОЗОЛИН, с. Красный Яр Томской обл.
Источник: Радио №7, 2015
Источник
ТЕСТЕР АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ 12В
Самодельный тестер автомобильных аккумуляторов, позволяющий быстро и достоверно оценить состояние 12 В батарей, сделан на основе китайского модуля ZB2L3. Это анализатор скорости разряда при определённой нагрузке работающий с АКБ 1.2-12 В, в том числе стандартных литиевых, типа 18650. Его цена на торговых площадках примерно 300 рублей.
Характеристики модуля ZB2L3
- Рабочий ток: 70 мА
- Напряжение питания: 4.5-6 В (разъем USB)
- разрядное напряжение: 1-15 В, шаг 0.01 В
- Диапазон напряжения отключения: 0.5-11 В
- Разрядный ток: максимальный 3 А, разрешение 0.001 А
- Максимальная погрешность измерения напряжения: 1%
- Максимальная погрешность измерения тока: 1.5%
- Максимальная емкость батареи: 9999 А/ч (отображение путем сдвига десятичной точки)
Резистор 7,5 Ом на 5 Вт, входящий в комплект к тестеру, не сможет проверить автомобильный АКБ 12 В. Полностью заряженный аккумулятор будет при испытании давать ток около 1.7 А, так что мощность этого резистора должна быть не менее 20 Вт.
Схема доработки модуля
Тест батареи 72 A/ч продолжался двое суток, поэтому решено было увеличить ток разряда выше паспортного. Максимальный заявленный ток разряда через этот модуль 3 A, но на плате есть измерительный резистор 0R05 в SMD виде, поэтому можно просто подключить реле и присоединить второй резистор большой мощности. При желаемом токе разряда 5 А — мощность этого резистора минимум 60 Вт, так что проблему трудности охлаждения его решила обычная галогеновая лампа H7. С ней ток разряда 4 А и время теста АКБ 72 А/ч сократилось до 18 часов, а для батареи 44 А/ч менее 10, что является приемлемым значением.
Для правильной работы тестера требуется питание 5 В. Предусмотрено питание от Повер Банка через разъем micro-USB. В данном исполнении решено было добавить модуль зарядки/защиты на TP4056 и модуль повышающего преобразователя на MT3608. Холодная нить накала лампы имеет малое сопротивление, поэтому контакты реле должны выдерживать минимум 20 ампер. Элементы тестера автоаккумуляторов спрятаны в куске пластикового кабель-канала.
Описание тестирования емкости батареи
Перед началом испытаний аккумулятор заряжается полностью, после чего нужно подождать 2 часа.
- Подключить исследуемый аккумулятор.
- Включить питание измерителя. На дисплее отобразится текущее напряжение аккумулятора.
- Нажать кнопку + или — Тестер сам определяет тип батареи и по умолчанию выбирает и отображает конечные напряжения разряда, например, 3,0 В для Li-Po и 9 В для свинцовых. Кнопками +/- вручную изменить напряжение до 10.5 В так как не каждый аккумулятор без ущерба выдержит разряд до 9 вольт.
- Установленное напряжение разряда подтвердить кнопкой ОК.
- После контроля начнется тестирование, что будет видно по лампочке. При этом на дисплее последовательно появляться будут: текущее напряжение батареи, текущий ток разряда (через резистор 47 Ом) и определяемая емкость.
- Тест длится несколько часов, конец теста показывается миганием дисплея. Лампа выключается автоматически, после завершения разряда.
- Считываем и записываем показания. Причём в целях экономии энергии, результат держится несколько минут, потом дисплей гаснет и тестер переходит в спящий режим.
Заметьте, что тестер покажет только емкость рассчитанную через резистор 47 Ом, и мы должны добавить к этому значение с лампой. Лампа H7 имеет сопротивление горячей нити примерно 3 Ома. Аккумулятор разряжается параллельно через резистор и лампу накаливания. Примерно это будет 2,8 Ома, поэтому полученный результат следует умножить на 14,2. Расчеты очень просты, так что каждый сам узнать точное итоговое значение.
Было проведено и тестирование литиевых элементов 18650, разряжая их током около 0.4 А, с этим тоже не возникло никаких проблем. В общем прежде чем покупать или эксплуатировать долго стоявший аккумулятор, советуем проверить их этим несложным устройством.
Источник
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Активная нагрузка с измерением емкости аккумулятора
Представляем проект самодельной активной электронной нагрузки. Сама по себе активная нагрузка не является чем-то особенным, но здесь расширение базы представляет собой микроконтроллер, используемый для измерения тока, напряжения и мощности и тестирования емкости любых аккумуляторов от 100 мА/ч до 99 А/ч с функцией автоматического отключения нагрузки от источника после достижения установленного напряжения разряда. Дополнительным действием микроконтроллера является управление скоростью вентилятора в зависимости от температуры радиатора.
Схема измерителя ёмкости АКБ с электронной нагрузкой
Работа базовой схемы активной нагрузки довольно проста — силовой транзистор последовательно соединен с резистором измерения мощности источника с источником питания (например, блоком питания, аккумулятором). Транзистор управляется сигналом ошибки, генерируемым в измерительном усилителе на основе сигнала напряжения, получаемого с измерительного резистора, и сигнала напряжения, подаваемого с потенциометра управления. Разница этих сигналов заставляет транзистор открываться или закрываться через измерительный усилитель для их выравнивания. Это влияет на величину тока, протекающего через транзистор, и, следовательно на ток, поступающий от проверяемого источника. Напряжение, пропорциональное току протекающему через него в соответствии с законом Ома, подается на измерительный резистор.
Конечно, эта базовая схема имеет много различных модификаций, например более одного силового транзистора, дополнительные управляющие транзисторы, MOSFET-транзистор вместо биполярных, улучшенные версии операционных усилителей и так далее.
В данном проекте использован самый простой вариант с одним полевым транзистором STW20NB50 в корпусе TO-247. Транзистор напрямую управляется сдвоенным операционным усилителем LM358, питаемым от одного напряжения 9 В. Измеряемое напряжение от силового резистора (2 параллельных резистора 0R1 5 Вт) подается через простой RC-фильтр на инвертирующий вход первого усилителя, а на неинвертирующий вход другого операционного усилителя для усиления напряжения перед передачей в микроконтроллер — измерение тока.
Напряжение двух последовательно соединенных потенциометров управления также подается на вход неинвертирующего первого усилителя, создание системы грубой и точной регулировки, поглощенной текущей нагрузкой. В первом ОУ генерируется сигнал ошибки, управляющий силовым транзистором. Транзистор работает линейно, что несколько необычно для MOSFET, но совершенно нормально в данном случае.
Внимание: эта схема активной нагрузки может не выдержать обратного подключения проверяемого источника питания!
Проект основан на микроконтроллере ATtiny26. Он управляется внутренним генератором с частотой 8 МГц, который при первых нескольких срабатываниях калибруется «вручную» методом проб и ошибок, изменяя параметр, введенный в регистр генератора OSCCAL в начале программы (несколько раз корректируя, компилируя и программируя). Хотя в схеме есть функция измерения емкости батареи, которая заключается в подсчете принятой нагрузки как функции времени, не считаем необходимым стабилизировать время с помощью кварца, поскольку это не лабораторное оборудование, и небольшие отклонения отсчитываемого времени (после калибровки генератора) мало влияет на результат измерения АКБ. Если кто-то хочет стабилизировать таймер кварцем — можете сделать и так.
Программа была написана полностью на ассемблере и занимает доступную память процессора, всего 2 КБ.
АЦП подаются через блокирующий конденсатор в конце AVCC и в качестве источника использования эталонного напряжения внутреннее напряжение 2,56 В. Измерения проводятся циклически каждые 200 мсек в основном цикле программы.
Чтобы просмотреть ток и напряжение с точностью до 0,01, точность обработки АЦП была программно увеличена с 10 до 12 бит. Без этой процедуры точность индикации напряжения в предполагаемом диапазоне 30 В составляла 30 В / 1023 (АЦП) =
0,03 В, что не очень.
Благодаря передискретизации до 12 бит точность показаний напряжения составила 30 В / 4095 (АЦП) Полезное: Высококачественный УНЧ для колонок
Давайте проверим, будет ли ток = 4 А в течение 10 часов, тогда что получится? 4 A х 36000 с = 144000 Ас -> 144000/3600 = 40 Ач.
Чтобы измерить емкость аккумулятора он должен быть подключен к нагрузке с минимальными грубыми и точными потенциометрами (отключение нагрузки) и с максимальным потенциометром регулировки напряжения отсечки. На дисплее должно отображаться напряжение на аккумуляторе, например, 12,15 В и ток без нагрузки. Единица напряжения должна быть записана как «V» (с заглавной буквой), если это маленькая буква «v», следует кратковременно нажать кнопку, чтобы активировать функцию отключения нагрузки, чтобы вернуться к большому «V».
Теперь отрегулируем напряжение отсечки для потенциометра, например, для 12-вольтовой кислотной батареи это будет полное напряжение разряда 10,20 В (1,7 В / элемент, разные источники могут давать немного разные размеры, особенно в зависимости от его производителя). Нажимаем долго (более 3 секунд) функциональную кнопку отключения нагрузки, пока буква «V» не изменится на маленькую «v». Поверните потенциометр напряжение до максимального значения и оставить уже — с изолирующей нагрузкой вернутся в режим ожидания.
Теперь достаточно установить желаемый ток нагрузки, желательно на 20 часов (обычно в соответствии с рекомендациями для кислотных АКБ), например, 2,5 А для аккумулятора 50 А/ч, и ждать сигнала завершения — пикание. В зависимости от состояния АКБ, это может занять несколько часов. Благодаря функции отключения нагрузки не нужно беспокоиться о том, чтобы пропустить момент полной разрядки и повредить аккумулятор — нагрузка отключится автоматически. На дисплее можем прочитать значение емкости и времени измерения, которое прошло.
Измерение емкости активируется автоматически после обнаружения тока не менее 50 мА без какой-либо операции нажатием кнопки и регулировкой напряжения отключения, описанных выше — они служат только для активации режима контроля напряжения и отключения нагрузки.
На одном из выходов процессора имеется передача от программного обеспечения USART со скоростью 9600 8N1 в односекундном цикле, в которую включена информация, идентичная показанной на дисплее в виде кодов ASCII. Вы можете отправить передачу данных, например, на компьютер через любой адаптер RS232-TTL / USB и прочитать информацию непосредственно на любом терминале, указав соответствующий COM-порт адаптера. Переданные данные включают в себя коды ASCII, управляющие терминалом, а именно коды CR + LF на концах линии и код CLRSCR для очистки экрана в начале каждой передачи, благодаря чему данные отображаются в окне терминала в фиксированном месте (прокрутка окна при получении данных не производится).
Микроконтроллер напрямую управляет буквенно-цифровым ЖК-дисплеем 2×16 в 4-битном режиме. Дисплей отображает 6 параметров,
- в верхней строке: напряжение, ток, температура радиатора;
- в нижней строке: мощность, мощность, время измерения.
В схеме есть несколько потенциометров. Они используются для коррекции измерений напряжения и тока, а также контрастности дисплея и для регулировки уровня тока нагрузки (грубой и точной), а также для установки напряжения отсечки для измерений А/ч.
Источник питания служит силовой трансформатор мощностью 3 Вт и напряжением 12 В. Стандартный встроенный стабилизатор в версии SMD обеспечивает напряжение 5 В для питания всей схемы, в то время как стабилизатор 9 В в корпусе TO-92 для операционного усилителя припаян со стороны дорожек, напряжение отфильтровано несколькими электролитическими конденсаторами и керамикой.
Электронная схема была разделена на две печатные платы: плату процессора с взаимодействующими цепями и плату нагрузки с транзистором и резисторами. Они разработаны так, что их можно разделить на две части или оставить как одну большую плату. В случае разделения платы соединяются с помощью коротких отрезков проводов, предпочтительно кабелей, и размещаются в корпусе так, чтобы они были как можно ближе друг к другу (как можно короче соединительные провода). Силовой транзистор присоединен к достаточно большому радиатору с вентилятором.
Вся схема была размещена в типичном металлическом корпусе от блока питания компьютера АТХ. На одной из стенок прикреплена лицевая панель с отверстием для дисплея. В дополнение к дисплею имеются также бананы-разъемы для подключения проверяемого источника и потенциометров регулировки. Благодаря тому, что это корпус от БП компьютера, тут уже есть разъем для сетевого 220 В шнура питания.
Источник