- Схемы и пошаговая инструкция, как сделать автотрансформатор своими руками
- Принцип действия
- Первый вариант — прибор изменения напряжения
- Основные плюсы и минусы
- Проверка
- Мощность автотрансформатора
- Расчет провода
- Что такое ЛАТР
- Первым рассмотрим однофазный ЛАТР и его принцип работы
- Область применения
- Металлургическое производство
- Коммунальное хозяйство
- Химическая и нефтяная промышленность
- Производство техники
- Учебные заведения
- Подключение электродвигателя постоянного тока
- Изготовление самодельного ЛАТРа
- Подготовка материала
- Расчет провода
- Схема
- Намотка катушки
- Процесс сборки
- Проверка
- Процесс сборки
- Электронный автотрансформатор
- Тиристорный регулятор
- Транзисторное управление
- Схемы подключения электродвигателя постоянного тока
- Подключение с независимым возбуждением
- Подключение с параллельным возбуждением
- Подключение с последовательным возбуждением
- Подключение со смешанным возбуждением
Схемы и пошаговая инструкция, как сделать автотрансформатор своими руками
Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.
Принцип действия
Основной принцип действия автотрансформатора аналогичен обычному аппарату:
- ток, протекающий по первичной обмотке, создает магнитное поле и магнитный поток в магнитопроводе;
- величина этого поля зависит от силы тока и от числа витков;
- изменения магнитного потока наводят ЭДС во вторичной обмотке;
- величина наведенной ЭДС зависит от числа витков во вторичной обмотке.
Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.
Первый вариант — прибор изменения напряжения
Если вы начинающий электрик, то лучше попробовать сначала сделать простую модель ЛАТРа, которая будет регулироваться устройством напряжения — от 0—220 вольт. По такой схеме автотрансформатор имеет мощность — от 25—500 Вт.
Чтобы увеличить мощность регулятора до 1,5 кВт, нужно тиристоры VD 1 и 2 поставить на радиаторы. Подключают их параллельно нагрузке R 1. Эти тиристоры ток пропускают в противоположных направлениях. При включении прибора в сеть они закрыты, а конденсаторы C 1 и 2 начинают заряжаться от резистора R 5. Еще им при необходимости изменяют величину напряжения во время нагрузки. Вдобавок этот переменный резистор вместе с конденсаторами образовывает фазосдвигающую цепь.
Такое техническое решение дает возможность пользоваться сразу двумя полупериодами переменного тока. В итоге для нагрузки применяется полная мощность, а не половинная.
Единственный недостаток схемы в том, что форма переменного напряжения во время нагрузки из-за специфики работы тиристоров оказывается не синусоидальной. Все это приводит к помехам по сети. Для исправления в схеме проблемы достаточно встроить фильтры последовательно нагрузке. Их можно вытащить из сломанного телевизора.
Основные плюсы и минусы
В связи с особенностями конструкции автотрансформатор обладает преимуществами и недостатками по сравнению с обычными устройствами.
Достоинства автотрансформатора, проявляющиеся при Ктр0,5-2:
- меньший вес и габариты;
- более высокий КПД, связанный с пониженными потерями в обмотках и магнитопроводе.
Кроме достоинств, эти устройства имеют недостатки:
- Повышенный ток КЗ. Это связано с тем, что ток нагрузки ограничен не насыщением магнитопровода, а сопротивлением нескольких витков вторичной обмотки.
- Электрическая связь между первичной и вторичной обмотками. Это делает невозможным применение этих аппаратов в качестве разделительных и для питания низковольтных устройств в опасных условиях, требующих низкого напряжения согласно ПУЭ.
Проверка
Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:
- Подключаем автотрансформатор к сети 220 В;
- Проверяем на отсутствие задымления, запаха гари, сильных шумов;
- Вольтметром проверяем соответствие выходных значений;
- Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
- Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.
При отсутствии проблем автотрансформатор готов к работе.
Мощность автотрансформатора
Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.
Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².
Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.
Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Что такое ЛАТР
Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.
Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.
Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:
- Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
- Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
- ШИМ-контроллер.
Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.
Первым рассмотрим однофазный ЛАТР и его принцип работы
Основная задача ЛАТРа — плавное регулирование величины напряжения в заданных пределах. Не всегда, если подается 220В, то максимальной величиной на выходе будет 220В.
Если собрать схему “латр + трансформатор напряжения”, то, регулируя напряжение на латре, будем регулировать и трансформированное напряжение после ТНа. Тем самым можно добиться высокого значения выходной величины.
А если собрать схему “латр + НТ-12”, то можно создать ток большой величины и, например, прогрузить автоматы.
Основными параметрами ЛАТРа при его выборе выступают следующие:
- однофазный или трехфазный
- напряжение сети: 127; 220; 380В
- максимальный ток нагрузки (за этой величиной надо следить, ведь именно из-за превышения допустимого выходного тока регуляторы выходят из строя); чем больше ток, тем габаритнее устройство и тем тяжелее его тягать по объекту при пусконаладке =(
- ток холостого хода (ток, который протекает по ЛАТРу без подключенной нагрузки)
- КПД
- мощность
- наличие защитных устройств в конструкции
- наличие гальванической развязки
Сейчас существуют разные модели регуляторов. Но, как у российских, так и у китайских расположение клемм для подключения будет примерно одинаковым. Слева подключается сеть (источник питания, вход, input, большие буквы), а справа подключается нагрузка (выход, output, малые буквы), на которой и будет регулироваться напряжение. На последних моделях чуть выше клемм подключения располагается миниатюрный вольтметр для контроля величины выходного напряжения.
Подключение от сети стоит производить через автоматический выключатель, ибо, так мы обезопасим себя в случае возможной аварийной ситуации. Провода между ЛАТРом и автоматом и между автоматом и сетью должны быть подобраны согласно допустимого сечения. Не следует забывать заземлять прибор.
Также помните о том, что в автотрансформаторе отсутствует гальваническая развязка. Пример, возьмем схему однофазного ЛАТРа (на рисунке снизу слева).
Видим, что Х и х связаны между собой физически. То есть положение ручки прибора может находиться в нулевом положении, а фаза уже будет на выходе, следует быть начеку и не касаться руками выходов ЛАТРа при поданном напряжении. Для подстраховки покупают ЛАТРы с гальванической развязкой или используют разделительный трансформатор (трансформатор с коэффициентом трансформации равным единице; рисунок справа сверху).
Регулирование производится плавным движением ручки, расположенной сверху или сбоку регулятора. Так, перед началом подачи, ручка должна быть выведена в нулевое положение (против часовой стрелки до упора).
Всегда стоит следить, чтобы ручка находилась в нулевом положении — потому что иначе произойдет включение под нагрузкой и ток неизвестной величины отправится в вашу схему. А это не есть нормальный режим.
Хотя, если подаете с ретома-11 ток или напряжение толчком на реле, то это норм. Ретом-11 — это вообще просто набор ЛАТРов с различными параметрами.
Область применения
Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.
Металлургическое производство
Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.
Коммунальное хозяйство
До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.
В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.
Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.
Химическая и нефтяная промышленность
В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.
Производство техники
В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.
Учебные заведения
В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.
Подключение электродвигателя постоянного тока
Несмотря на то, что электродвигатели постоянного тока не так популярны, как устройства, работающие на переменном токе, сфера их применения довольно широка: они используются в быту, в качестве элементов различного наземного транспорта, а также на предприятиях в приводах элементов, бесперебойное электроснабжение которых осуществляется аккумуляторными батареями. Именно поэтому на сайте торгового дома Степмотор представлен широкий ассортимент устройств такого типа. Отличительной особенностью электродвигателей постоянного тока является наличие обмоток возбуждения, при этом от того, каким образом они будут подключены к сети, напрямую зависят пусковые характеристики, механические и электрические свойства двигателя.
Изготовление самодельного ЛАТРа
В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.
Подготовка материала
Для изготовления регулируемого автотрансформатора необходимы:
- Магнитопровод. Его сечение определяет мощность автотрансформатора.
- Обмоточный провод. Его сечение зависит от мощности и потребляемого тока устройства.
- Термоустойчивый лак. Необходим для пропитки катушки после намотки проводов. Допускается замена масляной краской.
- Тряпичная изолента или киперная лента и корпус с закрепленными разъемами для подключения нагрузки и питания. Желательно разместить в корпусе цифровой или аналоговый вольтметр
- Многопозиционный переключатель. Его допустимый ток должен соответствовать току аппарата. При необходимости допускается производить переключение выводов автотрансформатора при помощи пускателей.
Расчет провода
Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.
Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:
- подключить трансформатор к сети 220В;
- вольтметром измерить выходное напряжение V;
- отключить аппарат;
- разобрать магнитопровод;
- размотать вторичную обмотку, считая количество витков N;
- по формуле n/v=N/V вычислить количество витков/вольт – основной параметр для расчета катушки;
- измерить сечение провода первичной обмотки.
Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.
Схема
Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.
Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:
- определить и указать на схеме напряжение V каждого из положений переключателя;
- рассчитать необходимое число витков между отводами по формуле N=(n/v)*(V²-V³), где V¹, V², V³ и т.д. – напряжение на последующих выводах;
- указать на схеме количество витком между каждыми из отводов.
Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.
Намотка катушки
После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:
- наматывается необходимое число витков в секции;
- выполняется ответвление – из обмоточного провода, не обрывая его, делается петля длиной 5-20 см и скручивается в жгут;
- после изготовления отвода продолжается намотка катушки;
- операции 1-3 повторяются до завершения намотки;
- готовая обмотка закрепляется киперной лентой и покрывается лаком или краской.
Процесс сборки
После завершения намотки и высыхания лака производится сборка автотрансформатора:
- собирается магнитопровод;
- собранный аппарат устанавливается в корпус;
- подключаются многопозиционный переключатель и вольтметр;
- собранный автотрансформатор подключается к клеммам.
Проверка
После сборки работоспособность устройства необходимо проверить:
- первичная обмотка аппарата подключается к сети;
- измеряются напряжения при каждом из положений переключателя и данные сравниваются с расчетными;
- через 20 минут трансформатор отключается и проверяется на нагрев – при его отсутствии производятся повторные испытания под нагрузкой.
Процесс сборки
Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.
После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.
После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.
Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.
Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.
Электронный автотрансформатор
Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.
Тиристорный регулятор
Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.
Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.
Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.
Транзисторное управление
Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.
Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.
Схемы подключения электродвигателя постоянного тока
В зависимости от требуемых выходных характеристик электродвигателя постоянного тока, его подключение может быть осуществлено по одной из принципиальных схем: подключение с независимым, последовательным, параллельным или смешанным типом возбуждения. Схематическое изображение типов подключения электродвигателя постоянного тока представлено на иллюстрации, при этом каждый из типов подключения привносит свои особенности в эксплуатацию механизма.
Подключение с независимым возбуждением
При использовании такой схемы подключения обмотка возбуждения подключается напрямую к независимому источнику. При использовании такой схемы подключения общие характеристики электродвигателя станут идентичны двигателю, работающему на постоянных магнитах. Регулировка скорости вращения осуществляется с помощью сопротивления, возникающего в якорной цепи, или же при помощи реостата – регулировочного сопротивления в цепи обмотки возбуждения. При этом следует отметить, что при регулировке реостатом важно следить за величиной сопротивления в цепи обмотки: при сильном уменьшении этого значения (а также при обрыве) токи якоря резко возрастают, достигая опасных величин. При использовании для подключения схемы независимого возбуждения запрещается запуск электродвигателя на холостом ходу или при дефиците валовой нагрузки: такие действие неминуемо приведут к резкому увеличению скорости вращения и повреждению механизма.
Подключение с параллельным возбуждением
При использовании такого типа подключения подключение обмоток ротора и возбуждение происходит параллельно, к единому источнику питания. Таким образом, при включении электродвигателя в сеть на ротор подаётся большее количество тока, чем на обмотку возбуждения, благодаря чему выходные характеристики параллельно подключённого двигателя постоянного тока позволяют использовать их в приводах станков и прочего промышленного оборудования. Скорость вращения регулируется реостатами в цепи ротора.
Подключение с последовательным возбуждением
При использовании такого типа подключения якорная обмотка и обмотка возбуждения используют один ток, а их включение осуществляется попеременно. Скорость и нагрузка в двигателе постоянного тока, подключённом по последовательной схеме, прямо пропорциональны друг другу. Запуск на холостом ходу запрещён. Благодаря хорошим пусковым характеристикам, обеспечиваемым подключением с последовательным возбуждением, двигатели постоянного тока, подключённые по такой схеме, широко применяются в электротранспорте.
Подключение со смешанным возбуждением
Применение схемы смешанного возбуждения при подключении электродвигателя постоянного тока используются две попарно расположенные на полюсах двигателя обмотки возбуждения. Здесь существуют два варианта подключения: потоки будут либо складываться, либо вычитаться. В первом случае особенности работы электродвигателя будут аналогичны подключению по схеме последовательного возбуждения, во втором – параллельного.
Источник