- Размагничивание труб перед сваркой
- Размагничивание труб перед сваркой на WordPress.com
- Размагничивание труб перед сваркой
- 11.3.3 Размагничивание источниками сварочного тока | Югорский учебный центр
- 1.7.8 Размагничивание труб и соединений перед сваркой.
- Как убрать намагниченность со свариваемых труб?
- Ситуация с намагниченностью труб
- Решение магнитной проблемы
Размагничивание труб перед сваркой
Размагничивание труб перед сваркой на WordPress.com
Сварка труб и стальных конструкций на постоянном токе нередко сопровождается эффектом “магнитного дутья”, причиной которого является остаточная намагниченность. При этом ухудшается стабильность процесса, происходит разбрызгивание металла, в сварном шве образуются дефекты типа пор, несплавлений, непроваров, шлаковых включений, а порой сварка становится просто невозможной из-за срыва дуги и залипания электрода. Главной причиной намагниченности трубопроводов является применение для диагностики их технического состояния магнитных дефектоскопов, после чего величина остаточного магнитного поля в разделке сварного стыка может достигать 100-150 мТл (1000 — 1500 Гс) и более. Дополнительными факторами, способствующими намагничиванию трубопроводов, являются магнитное поле Земли, упругие механические напряжения, технологическая намагниченность труб при их изготовлении и транспортировке.
Поскольку намагниченность труб не позволяет получить хорошее качество шва, размагничивание их перед сваркой является необходимой технологической операцией. Достичь полного размагничивания практически невозможно, поэтому допускается сварка при незначительной остаточной намагниченности, не оказывающей ощутимого влияния на сварочный процесс. Например, стандартом СТО Газпром 2-2.2-136-2007 «Инструкция по технологиям сварки при строительстве и ремонте промысловых и магистральных газопроводов. Часть 1» установлено, что остаточная намагниченность торцов труб и соединительных деталей трубопровода должна быть не более 2 мТл (20 Гс). При намагниченности более 20 Гс должно выполняться размагничивание.
Размагничивание труб перед сваркой
Применение диагностики состояния трубопроводов при помощи магнитных снарядов-дефектоскопов, близко расположенные линии электропередач, а также электрохимзащита труб приводят к намагничиванию участков трубопроводов.
При проведении электродуговой сварки в процессе ремонтно-восстановительных работ проявляется эффект «магнитного дутья», который выражается в затрудненном поджиге сварочной дуги, нарушении стабильности горения, выбросе металла из сварной ванны и, как следствие, появляются такие дефекты, как непровар сварного шва, не-сплавление кромок стыка, повышенное содержание пор и шлаковых включений в металле шва. Поэтому перед сваркой необходимо проводить технологические процессы размагничивания труб, обращая особое внимание на неоднородность распределения магнитной индукции по периметру сварочного стыка («шахматное поле»).
В настоящее время наиболее распространенным является метод знакопеременного поля.
Величина магнитной индукции для проведения стабильной сварки не должна превышать 20 Гс, в то время как остаточная намагниченность после магнитной дефектоскопии может достигать значений более 2000 Гс.
Следовательно, при использовании знакопеременного поля величина управляемого размагничивающего тока должна изменяться не менее чем в 100-150 раз.
Таким образом, в настоящее время существуют традиционные установки для размагничивания трубопроводов с использованием больших соленоидов (≥100 кг), потребляющие значительное количество электроэнергии (≥10 кВт), имеющие сильноточные источники питания (до 100 А). При этом на размагничивание после установки оборудования затрачивается еще 10-15 минут. Такое оборудование требует не только повышенных энергозатрат, специально подготовленных операторов, но и повышенной трудоемкости при установке на трубопровод в полевых условиях.
Разработчикам ЗАО «Газприборавтоматикасервис» удалось найти принципиально новое техническое решение и разработать малогабаритное устройство локального размагничивания стыков труб магистральных трубопроводов.
Принципиальной особенностью устройства УСНТ-1 является то, что воздействие компенсирующего потока наиболее эффективно именно в месте сварки, в стыке труб. Более того, исполнительная часть устройства подбирает магнитное поле в стыке по текущим показаниям датчика Холла, поэтому автоматически учитываются не только особенности материала трубы, неравномерность и направление исходной намагниченности, но и геометрические факторы: толщина стенки трубы, угол фаски, величина зазора между трубами. По достижении заданного уровня намагниченности (≤ 2мТл) поддерживается определенный таким образом компенсирующий поток, обнуляющий поле только в стыке. Таким образом, многофакторная оптимизация воздействия на локальном участке сварного стыка позволяет снизить энергозатраты с 10 кВт до 150 Вт, уменьшить вес со 100 до 12 кг.
Установленные на корпусе прижимные магниты удобно удерживают устройство в любом месте трубы, позволяя сваривать сложные потолочные швы.
Полевые испытания показали, что для размагничивания зоны сварки с остаточной намагниченностью до 2000 Гс в стыке достаточно иметь рабочий ток не более 4 А вместо традиционных более 50 А. Вес такого устройства не превышает 12 кг вместо традиционных 100 кг. Следует отметить, что устройство может питаться от автомобильного аккумулятора 24 В.
В целях определения пригодности устройства УСНТ-1 для размагничивания участков труб магистральных газоне-фтепроводов ОАО «Газпром» и соответствия технических характеристик и функциональных показателей устройства техническим требованиям ОАО «Газпром» проведены квалификационные испытания на производственной базе УАВР ООО «Газпром трансгаз Саратов» с участием представителей ООО «ВНИИГАЗ». Получено положительное заключение ООО «ВНИИГАЗ» о применении устройства на предприятиях ОАО «Газпром».
Герметичное исполнение корпуса электронного блока УСНТ-1 позволяет использовать прибор в ремонте подводных переходов МГ.
Так, в октябре 2009 г. УСНТ-1 успешно применялось при проведении подводных сварочных работ методом гипер-барической ручной дуговой сварки намагниченных труб 1220 мм в среде инертных газов в кессоне «Специализированного подводного комплекса» ООО «Спецподводремонт» на глубине 5 м в акватории Химкинского водохранилища. Прибор показал высокую надежность, простоту и безопасность эксплуатации.
В качестве вывода можно отметить неоспоримые преимущества устройства УСНТ-1 перед традиционными установками размагничивания.
11.3.3 Размагничивание источниками сварочного тока | Югорский учебный центр
Размагничивание труб источниками сварочного тока импульсным методом выполняется в следующей последовательности:
— провести намотку сварочного кабеля (от 18 до 20 витков) на расстоянии от 10 до 20 мм от торца трубы (рисунок 11.13), при этом торцы двух размагничиваемых труб должны находиться на расстоянии не менее 2500 мм;
— определить исходную величину и направление магнитного поля по периметру трубы в восьми контрольных точках;
— установить минимальный ток на источнике сварочного тока (в интервале от 30 до 70 А), замкнуть контакт на пластину;
— измерить величину магнитного поля по периметру трубы в восьми контрольных точках. Если величина магнитного поля не изменилась или увеличилась, необходимо изменить полярность тока на соленоиде;
— установить максимальный ток на источнике сварочного тока (в интервале от 240 до 300 А), замкнуть контакт на пластину, выдержать в течение 6-12 с, затем разомкнуть контакт и отключить источник питания;
— выполнить демонтаж размагничивающих обмоток (соленоида).
— труба; 2 — сварочный кабель; 3 — сварочный источник питания постоянного тока; 4 — металлическая пластина; 5 — разъемный контакт
Рисунок 11.13 — Схема монтажа оборудования для размагничивания труб импульсным методом
Размагничивание соединений перед сваркой источниками сварочного тока компенсационным методом выполняется в следующей последовательности:
— определить исходную величину и направление магнитного поля по периметру сварного соединения в восьми контрольных точках;
— провести намотку сварочного кабеля сечением 35; 50 мм 2 на оба конца труб (рисунок 11.14), при этом намотка должна быть в одном направлении, равномерной плотной и однорядной, количество витков, наматываемых на конец трубы с большей величиной магнитного поля, — от 7 до 11, трубы с меньшей величиной магнитного поля — от 3 до 5 витков;
— подключить сварочный кабель к источнику постоянного тока;
— включить сварочный источник и постепенно увеличивать величину тока с минимального значения, одновременно контролируя изменение величины магнитного поля;
— если величина магнитного поля в сварном соединении увеличивается, отключить источник питания и изменить полярность (поменять концы сварочного кабеля на источнике питания);
— если величина магнитного поля в соединении труб не превышает 20 Гс, приступить к сварке корневого слоя шва, по мере выполнения которого величину тока снижают, одновременно контролируя величину магнитного поля в зазоре труб;
— отключить источник питания и измерить величину магнитного поля по периметру соединения после сварки корневого слоя шва. Если величина магнитного поля не превышает 20 Гс, провести демонтаж сварочного кабеля, если величина магнитного поля превышает 20 Гс, провести размагничивание перед сваркой последующих слоев шва.
— труба; 2 — сварочный кабель; 3 — сварочный источник питания постоянного тока
Рисунок 11.14 — Схема монтажа оборудования для размагничивания соединений перед сваркой компенсационным методом
Размагничивание соединений перед сваркой источниками сварочного тока при знакопеременном магнитном поле компенсационным методом выполняется в следующей последовательности:
— определить исходную величину и направление магнитного поля по периметру сварного соединения в восьми контрольных точках;
— провести размагничивание компенсационным методом аналогично требованиям 11.3.3.2 отдельных участков периметра сварного соединения с наибольшей величиной и одним направлением магнитного поля с последующей сваркой корневого слоя шва на этих участках;
— изменить полярность тока на источнике питания и выполнить размагничивание участков периметра сварного соединения с другим направлением магнитного поля с последующей сваркой корневого слоя шва на этих участках;
— отключить источник питания и измерить величину магнитного поля по периметру соединения после сварки корневого слоя шва. Если величина магнитного поля не превышает 20 Гс, провести демонтаж сварочного кабеля, если величина магнитного поля превышает 20 Гс, провести размагничивание перед сваркой последующих слоев шва.
1.7.8 Размагничивание труб и соединений перед сваркой.
Размагничивание постоянными магнитами
Участки газопроводов при проведении ремонтно-восстановительных работ (РВР) подлежат размагничиванию в случаях наличия остаточного магнетизма в металле труб после проведения диагностики газопроводов с применением внутритрубных передвижных магнитных дефектоскопов, применения магнитопорошковой дефектоскопии сварных соединений, а также нахождения участков газопровода вблизи линии электропередач и др.
Для снижения влияния магнитного дутья и улучшения стабильности горения дуги при сварке газопроводов с остаточной намагниченностью необходимо:
- провести симметричное заземление труб;
- обеспечить каждый пост сварки отдельным обратным кабелем с минимальным расстоянием между обратным кабелем и местом сварки;
- располагать сварочные кабели параллельно свариваемым кромкам;
- не допускать контакта электродержателя или оголенного сварочного провода с поверхностью газопровода;
- проводить сварку в направлении крепления обратного кабеля, наклон электрода при сварке должен быть в сторону, противоположную отклонению сварочной дуги.
Намагниченность металла труб перед сваркой классифицируется на уровни:
- слабый – менее 20 Гс;
- средний – от 20 до 100 Гс;
- высокий – более 100 Гс.
Для размагничивания участка газопровода до допустимых пределов намагниченности (не более 20 Гс), необходимо создать размагничивающее магнитное поле с большей величиной магнитного поля и противоположным направлением. Полное размагничивание из ферромагнитных сталей невозможно.
Размагничивание следует выполнять с применением методов размагничивания:
- импульсного;
- циклического перемагничивания;
- компенсационного,
а также другими методами, согласованными к применению с ОАО «Газпром».
Проверку величины магнитного поля следует производить электронными магнитометрами.
Размагничивание соединений перед сваркой постоянными магнитами необходимо выполнить в следующей последовательности:
- определить исходную величину и направление магнитного поля по периметру сварного соединения в восьми контрольных точках;
- выбрать постоянные магниты с учетом условия, что величина их магнитного поля должна быть больше величины остаточного магнитного поля сварного соединения. Допускается соединять магниты в пакеты (два и более) для увеличения величины магнитного поля и поверхности контакта с трубой с целью увеличения размагничивающего действия;
- установить магниты на участок сварного соединения, подлежащий размагничиванию, при этом, сварное соединение должно располагаться между полюсами магнитов, а полюса магнитов должны быть противоположны полюсам намагниченных труб (рисунок 14);
- проверить индикатором магнитного поля правильность установки магнитов — для изменения направления магнитного поля необходимо повернуть магниты на 180 градусов (или поменять местами полюса), для уменьшения величины магнитного поля необходимо переместить магниты по поверхности труб на некоторое расстояние от места размагничивания, для увеличения величины магнитного поля магниты следует приблизить к месту размагничивания;
Рисунок 14 – Схема размагничивания сварных соединений
- после размагничивания участка сварного соединения следует измерить величину магнитного поля, если она не превышает 20 Гс — приступить к сварке корневого слоя шва на этом участке;
- провести вышеуказанные операции по размагничиванию отдельных участков сварного соединения, перемещая постоянные магниты и корректируя, при необходимости, величину и направление магнитного поля.
Измерить величину магнитного поля по периметру соединения после сварки корневого слоя шва. Если величина магнитного поля не превышает 20 Гс, провести сварку последующих слоев шва, если величина магнитного поля превышает 20 Гс, провести размагничивание перед сваркой последующих слоев шва.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
Источник
Как убрать намагниченность со свариваемых труб?
Опубликовано Эксперт в 06.02.2020 06.02.2020
Ситуация с намагниченностью труб
Звонит мне как-то мастер с работы в выходной день. Его бригада выполняла срочную работу по заварке паропровода высокого давления.
Что делать? Подготовили два стыка диаметром 300 мм под сварку и не можем заварить. Варим ручной дуговой сваркой, дуга пляшет то влево, то вправо, электрод магнитится к трубе. Пробовали нагревать стыки газовым резаком-не помогает. Опытный сварщик сказал, что необходимо намотать вокруг трубы виток сварочного кабеля от мощного сварочного выпрямителя(2000А). Намотали: чуть не вспыхнули провода от перегрузки, а толку нет.
Я по телефону попытался объяснить, что необходимо попробовать сделать.
Решение магнитной проблемы
-Олег Иваныч ! Возьми простой сварочный инвертор 220вольт 200А. Возьми кусок сварочного провода метров 20 сечением 16-20 квадрат. Намотай провод от середины стыка к краям витки мотай в одном направлении как можно плотней Должно получится не менее 15 витков. Затем подключи концы кабеля к сварочному аппарату и выстави ток не менее 200А.
Выдерживай минуту, при этом прикасайся к разным концам труб кусочком электрода, тем самым определяя меняется ли намагниченность по разные стороны сварного стыка. Первоначально, после подключения катушки стороны трубы магнитят электрод с разной силой (определяется только по ощущениям) затем притяжение выравнивается. После отключения катушки от сварочного аппарата, электрод перестает магнититься к трубам, то есть магнетизм исчезает. Если номер не прошел или стык недостаточно размагнитился, попробуй поменять полярность и “поиграть” сварочным током
-Короче, Иваныч ! Сварщики говорят ничего не выйдет мы так просто спалим сварочный аппарат.
-Олег! ты со своими сварщиками, не понимаешь физики! Катушка, намотанная на металлический стержень это не короткое замыкание это электромагнит постоянного тока. Ладно сейчас сам подъеду .
Подъехал на работу, настроил катушку на трубу, подключил к сварочному инвертору, выставил ток 200А. Включил аппарат-электрод магнитит к трубе, отключил-магнитит. Поменял полярность и через минуту примагниченный к трубе электрод “отклеился” от трубы.
Работники, промучившиеся со стыками пол дня, посмотрели на меня как на волшебника
Почему некоторые т рубопроводы намагничиваются? Есть различные объяснения вплоть до электромагнитного поля земли.Я считаю Что это последствия технологических процессов трения внутри туб и применение различных систем контроля с использованием магнитов.
Есть вопросы,или ваши решения проблемы намагничивания,пишите в комментариях.
Источник