- Простой делитель частоты на микросхеме К561ИЕ19
- Делители частоты на «нестандартное» число
- Делители частоты на микросхемах ТТЛ и КМОП
- Схемы делителей частоты
- Частотомер — 3 рабочие схемы для сборки своими руками
- Частотомер на PIC16F628 своими руками
- Схема частотомера и необходимые детали для монтажа
- Рекомендации по подключению частотомера
- Частотомер — цифровая шкала. Схема и инструкция по монтажу
- Основные характеристики цифрового частотомера
- Цифровой частотомер — схема и её описание, необходимые комплектующие
- Простой частотомер на микросхеме своими руками — характеристики и схема
- Принципиальная схема частотомера и необходимые детали
- Печатная плата частотомера и рекомендации по монтажу своими руками
Простой делитель частоты на микросхеме К561ИЕ19
Нередко при создании цифровых устройств возникает необходимость в делителе частоты. Если построение делителей в четное число раз особых проблем не вызывает, то создание простого делителя, к примеру, на 3 или 5 представляет определенную трудность.
Предлагаемый делитель, собранный на КМОП микросхеме К561ИЕ19, позволяет поделить исходную частоту на любое число от 1 до 10, причем для создания делителя с коэффициентом пересчета 2, 4, 6, 8, 10 достаточно одного корпуса К561ИЕ19. Для создания делителя на 3, 5, 7 или 9 понадобится дополнительная микросхема мелкой логики К561ЛА7.
Микросхема К561ИЕ19 представляет собой пятиразрядный сдвиговый регистр с возможностью параллельной загрузки.
Входы D1 – D5 предназначены для параллельной загрузки данных. D0 – вход для последовательной загрузки. Вывод R имеет высший приоритет. При подаче на него лог. 1 все триггеры регистра сбрасываются в 0 независимо от сигналов на всех остальных входах. Запись данных, поданных на входы D1 – D5 во внутренние триггеры производится подачей на вход S лог. 1 (на входе R при этом должен быть лог. 0). Информация, записанная во внутренних триггерах, тут же появляется на выходах 1-5 в инверсном виде.
Сдвиг информации производится по спадам импульсов на входе С. При этом в первый триггер информация записывается со входа D0, информация последнего триггера теряется.
Для организации делителя на 2, 4, 6, 8, 10 достаточно вход D0 подключить к одному из выходов 1…5 соответственно. Для получения нечетного коэффициента пересчета понадобится два элемента 2И-НЕ. При этом для пересчета на 3, 5, 7, 9 входы первого элемента необходимо подключить к выходам 1 и 2, 2 и 3, 3 и 4, 4 и 5 соответственно. Сигнал с выхода этого элемента инвертируется вторым и подается на вход D0. В качестве примера ниже приведена схема делителя частоты на 5.
Делитель частоты на 5 на микросхеме К561ИЕ19
Временная диаграмма работы делителя на 5
По материалам «Применение цифровых микросхем серии ТТЛ и КМОП», Бирюков С. А.
Источник
Делители частоты на «нестандартное» число
Для деления частоты на 2, 4, 8, 16 и т.д. достаточно организовать цепочку, состоящую из нужного числа счетных, так называемых, D-триггеров. Для деления частоты в «нестандартное» число раз, к примеру, на 3 или 5, необходима специальная схема контроля, которая бы сбрасывала все триггеры при определенном их состоянии, чтобы счет начинался с нуля. Взглянем на схему ниже.
Благодаря элементу 3И-НЕ при состоянии триггеров 1-0-1 низкий уровень, появившийся на его выходе, сбросит все триггеры в ноль (входы R), и счетчик начнет считать сначала. Если перевести 101 в более привычную для нас десятичную систему счисления, получим 5, и это значит, что наш счетчик будет обнуляться после каждого пятого импульса. К нашим услугам делитель на 5.
Аналогичным образом можно организовать деление на любое число – вопрос лишь в количестве D-триггеров и сложности схемы управления. Впрочем, чтобы построить нечетный делитель до 10 (а точнее на 3, 5, 6, 7, 10) можно обойтись достаточно простой системой контроля, состоящей лишь из… одного конденсатора:
Делитель на 5 с использованием в схеме сброса конденсатора
Фокус этой схемы в том, что первый и второй триггеры сбросятся в тот момент, когда на инверсном выводе третьего произойдет переход с высокого логического уровня на низкий. Если вы разобрались в работе D-триггера, которую я описывал в предыдущих статьях, то без труда определите, что мы организовали все тот же счетчик-делитель на 5, но схема его гораздо проще рассмотренного выше.
Аналогично организуем счетчик-делитель на 3:
Обратите внимание на схему делителя на 6 — это тот же делитель на 3, перед которым стоит обычный счетный триггер-делитель на 2 (DD6). Ну а делитель на 10 — это делитель на 2 + делитель на 5. Несмотря на свою простоту, такие схемы при использовании микросхем ТТЛ применяются достаточно широко и вполне надежны.
Источник
Делители частоты на микросхемах ТТЛ и КМОП
Сразу оговорюсь, что схемотехника построения делителей частоты на ТТЛ и КМОП практически ничем не отличается (единственным отличием может быть существование того или иного счетчика в каждой из серий). Таким образом схемы, приведенные в статье, могут быть использованы для построения делителей как на КМОП, так и на ТТЛ логике.
Проще и нагляднее всего реализовать делитель частоты с помощью счетных триггеров (D-триггеров). Именно такие триггеры являются основой для построения счетчиков. Они работают в широком диапазоне частот (от 0 до граничной частоты переключения элементов серии), достаточно помехоустойчивы, не требуют дополнительных навесных элементов и просты в повторении. Еще один вариант – использование в качестве делителя JK-триггер. Поскольку такой триггер поистине универсальный, его несложно включить в счетном режиме. Ниже представлено две схемы-делителя на 2. Один из них собран на счетном триггере (1 элемент микросхемы ТМ2), второй на JK-триггере (рис.1).
Рис.1. Делитель на D и JK триггере
Соединив несколько делителей на 2 можно получить линейку с выходными частотами f/2, f/4, f/8, f/16 (выходы Q1, Q2, Q3, Q4 соответственно (рис.2).
Поскольку в одном корпусе ТМ2 находится 2 D-триггера, то на одной микросхеме несложно собрать делитель частоты на 3 (рис.3).
Для построения делителя на 5 на JK-триггерах в схему придется добавить логический элемент 2И-НЕ (рис.4).
Еще один корпус ТМ2 понадобится чтобы построить делитель частоты на 10 (рис.5).
Для большего коэффициента деления удобнее использовать микросхемы счетчиков:
Делитель на 1000
Особый интерес представляет микросхема серии ТТЛ – К155ИЕ2. Состоит она из двух блоков — делителя на 2 (вход С1) и делителя на 5 (C2). При соединении выхода первого делителя (вывод 12) с входом второго, легко получить делитель на 10 (рис.6 а). Еще один полезный узел микросхемы — 2 входа сброса, соединенных по «И» (выводы 2,3). Благодаря этому узлу и выводам выхода с каждого триггера счетчика (выводы 12,9,8,11) несложно собрать делитель с числом от 2 до 10 без использования дополнительных элементов. Для примера на рисунке 6 б изображен делитель на 6, а на рис. 6 в – делитель на 8.
Источник
Схемы делителей частоты
Схема пробника-делителя частоты для частотомера.
Схема пробника-делителя ( Рис.1 ) хорошо подходит для измерения высокочастотных сигналов в схемах, где требуется малое вмешательство из-за возможного ухода частоты. Предлагаемый пробник-делитель к частотомеру предназначен для измерения частоты в диапазоне 60 – 2300 МГц. Входной сигнал через ФВЧ С2L1 с частотой среза Fc = 55 МГц поступает на вход СВЧ усилителя на VT1. Его исток заземлён по переменному току конденсаторами С7, С8.
Диоды VD1, VD2 защищают вход VT1 от перегрузки по напряжению. Усиленный сигнал подаётся на первый счётчик-делитель DD1 (коэффициент деления 4), второй делитель DD2 (4) и на третий делитель DD 3 (10). Далее сигнал через преобразователь ЭСЛ/ТТЛ на транзисторах VT2, VT3 поступает на выход (ХР2).
Катушка L1 – бескаркасная, имеет 8 витков провода ПЭВ-2 диаметром 0,5 мм и наматывается на оправке 5 мм. В качестве DD2 можно применить микросхему К193ИЕ7. Если в качестве DD1 использовать К193ИЕ5, верхний диапазон измеряемых частот снизится до 1,5 – 1,7 ГГц.
Отдельные экземпляры ИМС К193ИЕ7 устойчиво работают на частотах 2,7 – 2,9 ГГц. Делитель выполнен поверхностным монтажом и заключён в латунный экран, однако возможно применение обычного монтажа. При использовании фольгированного текстолита (е = 4,7) ширина печатных дорожек входных сигнальных цепей (сток-исток VT1, вход DD1) должна быть примерно 1,5 мм, а для фольгированного фторопласта (е = 2,9) – 3 мм (при толщине материала подложки 1 мм).
Делитель рассчитан на низкоомную нагрузку и имеет низкое входное сопротивление (50 ом). Для измерения сигналов высокоомных источников элементы R1, R2, C1, VD1, VD2 необходимо исключить, а ёмкость С2 – уменьшить до 1 пФ. При этом во избежание пробоя VT1 не рекомендуется измерять СВЧ колебания большой амплитуды. Делитель для удобства работы можно оснастить съёмными низкоомным и высокоомным зондами.
Данная схема хорошо демонстрирует построение высокочастотного делителя. В ней можно применять в качестве первых делителей микросхемы:
*К193ИЕ5 ( на 4 с максимальной частотой 1 – 1,5 ГГц );
SP8610 ( на 4 предел 1 ГГц );
*К193ИЕ7 ( на 4 предел 2 – 2,5 ГГц );
*К193ИЕ2 ( на 10 предел 500 МГц );
*SP8685 ( на 10 предел 600 МГц ).
В качестве последующих делителей могут быть применены следующие микросхемы:
К500ИЕ137 ( на 10 предел 125 МГц );
К500ИЕ136 ( на 16 предел 125 МГц );
К531ИЕ14 ( на 10 предел 80 МГц ).
Их следует компоновать для получения требуемого коэффициента деления и максимальной частоты счёта. Только необходимо при соединении каскадов на ЭСЛ микросхемах с каскадами на ТТЛ и КМОП после ЭСЛ включить буферный каскад, подобный каскаду на VT2 ( Рис.1 ) для согласования логических уровней.
Схема высококачественного пробника-делителя.
Ещё лучшим вариантом для высокочастотного делителя будет применение специализированной микросхемы фирмы Phillips SAB 6456 ( Рис.2 ).
Этот делитель имеет следующие параметры:
* коэффициент деления …. 64/256;
* напряжение питания .…. 4,5 – 5,5В;
* ток потребления … 21 мА;
* входная частота … 70 – 1000 МГц;
* чувствительность … 1 В;
Если оставить вывод 5 микросхемы SAB6456 свободным, её коэффициент деления будет 64, при заземлённом выводе – 256.
Делитель обладает очень высокой чувствительностью, частотомер с этим делителем можно также использовать как индикатор частоты для обнаружения ВЧ передатчиков, принимая сигнал на телескопическую антенну.
В. Г. Белолапотков, А. П. Семьян «500 схем для радиолюбителей ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО» Наука и техника, Санкт-Петербург, 2007г, стр. 240 – 243.
Источник
Частотомер — 3 рабочие схемы для сборки своими руками
- На PIC16F628
- Частотомер — цифровая шкала. Схема и инструкция по монтажу
- На микросхеме
Сегодня рассмотрим пошагово создание частотомера своими руками. Первым делом поговорим о характеристиках и особенностях прибора на pic16f628a, рассмотрим схему и особенности монтажа. Вторая схема частотомера — цифровой шкалы. Уделим внимание подбору необходимых комплектующих и остановимся детальнее на сборке. Третья схема представляет простой частотомер на микросхемах. Но обо всём по порядку.
Частотомер на PIC16F628 своими руками
Первым делом рассмотрим простую и дешевую схему частотомера. Он может измерять сигналы от 16 до 100Гц с максимальной амплитудой 15В. Чувствительность высокая, разрешение — 0,01 Гц. Входной сигнал может быть синусоидальной, прямоугольной или треугольной волной.
Частотомер может использоваться во многих приложениях. Например, для наблюдения за точностью генератора, для измерения частоты сети или нахождения оборотов двигателя, соединенного с датчиком.
Схема частотомера и необходимые детали для монтажа
Файл печатной платы представлен в формате PDF, архив можно скачать ниже. Вы можете сделать плату используя метод ЛУТ.
CCP (Capture(Захват)/Compare(Сравнение)/PWM(ШИМ)) модуль PIC-микроконтроллера считывает входной сигнал. Используется только функция захвата.
Необходимые детали для сборки частотомера:
- МК PIC 8-бит — PIC16F628A (PIC16F628-04/P).
- 4 биполярных транзистора — BC547.
- 2 керамических конденсатора — 22 пФ.
- 12 резисторов — 1х4.7 кОм, 4х1 кОм, 7х330 Ом.
- Кварц — 4 МГц.
- 4 семисегментных индикатора (общий катод).
Радиоэлементы для изоляции:
- Биполярный транзистор — BC547.
- Выпрямительный диод — 1N4148
- Оптопара — 4N25M.
- 4 резистора — 2х1 кОм, 1х10 кОм, 1х470 Ом.
Необходимые комплектующие для сборки питания:
- Линейный регулятор — LM7805.
- 2 электролитических конденсатора — 100 мкФ, 16В.
- 2 полиэфирных конденсатора — 220 нФ.
Дисплеи — красные, 7-сегментные светодиодные, 14,2 мм с общим катодом.
Рекомендации по подключению частотомера
Перед измерением частоты входного сигнала, он должен быть преобразован в прямоугольный. Для этой цели используется схема оптической развязки с оптроном 4N25. Таким образом, входной сигнал надежно изолирован от микроконтроллера и превращается в меандр. Амплитуда сигнала не должна превышать 15В. Если это произойдет, резистор 1кОм может сгореть. Если вы хотите измерить частоту сети, вы должны использовать 220В/9В трансформатор.
- Схема DDS-генератора сигналов
Напряжение питания должно быть в пределах 8–12В. При большем напряжении схема может быть повреждена. Нужно быть осторожными с полярностью при подключении питания.
Принципиальная схема счетчика (частотомера) приведена в файле проекта. Есть 4 дисплея, которые работают по методу мультиплексирования (динамическая индикация). Для измерения вывод RB3 подключен к выходу оптического изолятора. 5 вывод второго дисплея подключен к питанию через резистор 1 кОм, так что точка после второго дисплея горит. Это соединение не показано на схеме.
C-код, написанный в PIC C компиляторе, доступен для скачивания. HEX также прилагается.
Мы использовали два дополнительных разъема. Первый (18 контактный, 2 ряда) для микроконтроллера PIC16F628, и второй (40 контактный, 2 ряда).
Видео о сборке частотомера на PIC16F628A:
Частотомер — цифровая шкала. Схема и инструкция по монтажу
Рассматриваемое устройство выполняет функции:
- частотомера с выводом измеренного значения частоты в герцах (до 8 разрядов);
- цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера;
- электронных часов.
Основу устройства составляет программируемый контроллер PIC16F84 фирмы Microchip. Быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, то есть можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа.
Основные характеристики цифрового частотомера
- Диапазон измеряемых частот — 0–50 МГц.
- Диапазон программируемых значений ПЧ — 0–16 МГц.
- Минимальный уровень входного сигнала — 200 мВ.
- Время измерения частоты — 1 с.
- Погрешность измерения — ±1 Гц.
- Напряжение питания — 5±0,5 В.
- Ток потребления устройства — не более 30 мА.
Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать значение промежуточной частоты (ПЧ). Это дает возможность оперативно встраивать цифровую шкалу в трансивер с любым (0–16 МГц) значением промежуточной частоты.
- Смотрите схему измерителя емкости конденсаторов
В качестве устройства индикации применен модуль ЖКИ от телефонных аппаратов типа Panaphone. Ввод информации в модуль осуществляется по двум линиям в последовательном коде. Полезной оказалась встроенная функция электронных часов. Малый ток потребления обуславливает малые помехи радиоприемной аппаратуре, в которую может встраиваться данное устройство.
Цифровой частотомер — схема и её описание, необходимые комплектующие
Список необходимых радиоэлементов:
- Микросхема (DD1) — КР1554ЛА3.
- МК PIC 8-бит (DD2) — PIC16F84A.
- 2 биполярных транзистора (VT1, VT2) — КТ368А и КТ315Б.
- 6 диодов (VD1–VD6) — КД521Б.
- 3 конденсатора (С1, С2, С6) — 0.1 мкФ, 0.033 мкФ, 68 пФ.
- Электролитический конденсатор (С3, С4, С7) — 6.8 мкФ и 2х100 мкФ.
- Подстроечный конденсатор (С5) — 68 пФ.
- 14 резисторов — R1 (330 Ом); R2 (47 кОм); R3, R4, R6, R8–R11 (7х15 кОм); R5, R12–R14 (4х5.1 кОм); R7 (430 Ом).
- Кварцевый резонатор (ZQ1) — 4 МГц.
- LCD-дисплей (HG1) — КО-4В, от телефонного аппарата.
- 3 тактовых кнопки S1, S2, WR_IF.
- Кнопка на размыкание НК.
- Батарея питания — 1.5 В.
- Блок питания — 5В.
На транзисторе VT1 и микросхеме DD1 выполнен формирователь входного сигнала. Микросхема DD2 выполняет функции контроллера частотомера, цифровой шкалы с АПЧ, управления модулем ЖКИ, а также позволяет оперативно изменять режим работы устройства.
Если на выводе 1 микросхемы DD2 присутствует уровень логической «1», то прибор выполняет функцию частотомера, если уровень логического «0» — цифровой шкалы. В режиме цифровой шкалы на индикатор выводится значение частоты входного сигнала равное Рвх+Р„ч при наличии уровня логической «1» на выводе 2 микросхемы DD2; или Fвх-Fпч — при уровне логического «0» на выводе 2 DD2.
- Смотрите, как сделать щуп для осциллографа
Для записи необходимого значения Fпч надо в режиме частотомера подать на вход устройства сигнал с частотой Fпч (сигнал опорного генератора или телеграфного гетеродина, настроенных на центральную частоту полосы пропускания фильтра ПЧ), а на вывод 8 микросхемы DD2 на время 1,5–2 с подать уровень логического «0». Значение Fпч сохраняется в памяти при отключении питания и может неоднократно (не менее 106 раз) перепрограммироваться приведенным выше способом.
Система АПЧ ГПД работает следующим образом. После измерения частоты входного сигнала производится анализ числа равного сотням герц и, если оно четное, на вывод 8 микросхемы DD2 выдается уровень логического «0». Если нечетное, на вывод 8 микросхемы DD2 выдается уровень логической «1». Эти логические сигналы, предварительно проинтегрировав, можно использовать для управления емкостью варикапа в контуре ГПД. В результате осуществляется стабилизация частоты возле четных значений сотен герц с точностью ±10 Гц.
В режиме цифровой шкалы можно осуществить гашение десятков и единиц герц, если установить уровень логического «0» на выводе 9 микросхемы DD2.
Для перевода устройства в режим электронных часов необходимо нажать кнопку «НК». Для корректировки часов и минут служат кнопки «S1» и «S2».
Печатная плата частотомера:
Скачать прошивку и исходный код можно ниже:
Смотрите также видео, как собрать частотомер своими руками:
Простой частотомер на микросхеме своими руками — характеристики и схема
Параметры предлагаемого частотомера приведены в следующей таблице:
Режим работы | Частотомер | Частотомер | Цифровая шкала |
Диапазон измерений | 1 Гц…20 МГц | 1–200 МГц | 1–200 МГц |
Дискретность | 1 Гц | 10 Гц | 100 Гц |
Чувствительность | 40 мВ | 100 мВ | 100 мВ |
Данный частотомер обладает целым рядом преимуществ по сравнению с предшествующими:
- современная дешевая и легко доступная элементная база;
- максимальная измеряемая частота — 200 МГц;
- совмещение в одном приборе частотомера и цифровой шкалы;
- возможность увеличения максимальной измеряемой частоты до 1,2 ГГц при незначительной доработке входной части прибора;
- возможность коммутации во время работы до 4 ПЧ.
Измерение частоты осуществляется классическим способом: подсчет количества импульсов за фиксированный интервал времени.
Входной сигнал через конденсатор С4 поступает на базу транзистора VT1, который усиливает входной сигнал до уровня, необходимого для нормальной работы микросхемы DD2. Микросхема DD2 193ИЕЗ представляет собой высокочастотный делитель частоты, коэффициент деления которого равен 10.
Ввиду того что в используемом микроконтроллере К1816ВЕ31 максимальная частота счетного входа Т1 f=Fкв/24, где Fкв — частота используемого кварца, а в частотомере Fкв=8,8672 МГц, сигнал с высокочастотного делителя поступает на дополнительный делитель частоты, представляющий собой десятичный счетчик DD3. Процесс измерения частоты начинается с обнуления делителя DD3, сигнал сброса которого поступает с вывода 12 микроконтроллера DD4. Сигнал разрешения прохождения измеряемого сигнала на десятичный делитель поступает с вывода 13 DD4 через инвертор DD1.1 на вывод 12 DD1.3.
По окончанию фиксированного интервала времени измерения на выводе 13 DD4 появляется высокий уровень, который через инвертор DD1.1 запрещает прохождение измеряемого сигнала на делитель DD3, и начинается процесс преобразования накопленных импульсов времени в частоту, а также подготовка данных для вывода на индикацию.
Принципиальная схема частотомера и необходимые детали
Список необходимых радиоэлементов:
- 6 микросхем — DD1 (К555ЛА3); DD2 (К193ИЕ3); DD4 (КР1816ВЕ31); DD5, DD7 (2хК555ИР22); DD6 (К555ИД7); DD8 (К573РФ2).
- Логическая ИС (DD3) — К555ИЕ19.
- 17 биполярных транзисторов (VT1, VT2–VT17) — КТ368А и 16хКТ361В
- Стабилитрон (VD1) — КС113А.
- 7 конденсаторов — С1 (0.01 мкФ); С2, С8 (2х0.1 мкФ); С3 (56 пФ); С4 (1000 пФ); С5 (22 пФ); С6 (12 пФ).
- Подстроечный конденсатор (С7) — 5-20 пФ.
- Электролитический конденсатор (С9) — 3.3 мкФ.
- 41 резистор — R1 (51 Ом); R2, R25–R40 (17х68 кОм, R2 по ошибке в схеме указана как R3); R3 (10 кОм); R4, R6 (2х560 Ом); R5 (33 Ом); R6, R7 (2х1 кОм, в схеме по ошибке два резистора R6); R8–R23 (16х20 кОм); R24 (2 кОм).
- Кварцевый резонатор (ZQ1) — 8.86 МГц.
- Вакуумно люминисцентный индикатор (HL1) — ИВ-18.
- Переключатель (S1)
- Блок переключателей (S2)
Данный прибор может работать как в высокочастотном, так и в низкочастотном диапазонах. При работе в низкочастотном диапазоне переключатель S1 необходимо установить в верхнее положение и сигнал подавать на вход 2 (вывод 9) платы частотомера. Для измерения частоты от 1 Гц до 20 МГц необходимо использовать формирователь.
Программа работы микроконтроллера находится в ПЗУ DD8, микросхема DD5 используется для мультиплексирования адресов микроконтроллера. Прошивка ПЗУ для работы прибора в качестве частотомера приведена в таблице:
Для получения максимальной эффективности использования микроконтроллера в приборе применена динамическая индикация.
При использовании частотомера в качестве цифровой шкалы на вывод 22 DD8 необходимо с помощью переключателя S2.3 подать высокий уровень. Выбор значения ПЧ производится путем соединения выводов 10,11 микросхемы DD4 с землей. Вход 3 (вывод 5) платы частотомера предназначен для включения выбранной промежуточной частоты (например, при переходе с приема на передачу). Во время работы прибора в режиме цифровой шкалы младшие разряды индикатора показывают сотни герц. Работе прибора в режиме цифровой шкалы соответствует иная прошивка ПЗУ.
Печатная плата частотомера и рекомендации по монтажу своими руками
Печатная плата частотомера:
Печатная плата изготовлена из двухстороннего стеклотекстолита размерами 100х130 мм. Индикатор крепится непосредственно на печатной плате двумя хомутами из обычного монтажного провода. Для установки микросхемы DD8 предусмотрена панелька. При разводке платы предусматривалась необходимость размещения транзистора VT1 в максимальной близости к DD2.
Вокруг VT1 и DD2 оставлено возможно большее количество фольги с обеих сторон с целью экранирования высокочастотных цепей. В конструкции в качестве индикатора HL1 применен ИВ-18 как наиболее популярный в радиолюбительских конструкциях. В случае необходимости миниатюризации конструкции индикатор ИВ-18 может быть заменен на ИВ-21, который имеет значительно меньшие габаритные размеры. В этом случае необходимо уменьшить напряжение накала и отрицательное напряжение на катоде согласно паспортным данным. Микросхему DD1 желательно применять серии 1533 как более высокочастотную.
Для питания частотомера используется блок питания с напряжением от -20 В до -30 В и напряжением накала — до 4,8 В при использовании индикатора ИВ-18. В указанной схеме блока питания желательно диод КД503 заменить на стабилитрон КС133, что исключает ложную подсветку сегментов индикатора.
Наладку частотомера следует начинать с проверки на обрыв всех без исключения соединительных проводников печатной платы, затем проверить на отсутствие замыкания соседних на печатной плате соединительных проводников. Сразу же после подачи питания на частотомер проконтролируйте ток потребления по напряжению +5 В. Он не должен превышать 250 мА.
Затем измерьте напряжение на коллекторе VT1, оно должно находиться в пределах 2,0–3,0 В. Установка указанного напряжения осуществляется подбором резистора R3. При безошибочном монтаже, исправных деталях и отсутствии ошибок в программе окончательное налаживание прибора заключается в точной установке частот задающего генератора микроконтроллера с помощью конденсатора С7 в соответствии с показаниями образцового частотомера.
Благодаря программно-управляемому процессу измерения можно путем незначительного изменения программы микроконтроллера применять недесятичные высокочастотные делители. Были опробованы в данном приборе микросхемы 193ПП1 (коэффициент деления — 704), 193ИЕ6 (коэффициент деления — 256). Испытания показали, что максимальная частота измеряемого сигнала достигает значения 1 ГГц. Наиболее предпочтительной оказалась микросхема 193ПЦ1, поскольку она имеет входной усилитель. Микроконтроллер К181ВЕ51 можно заменить на К1816ВЕ31, К1830ВЕ31, К1830ВЕ51 или их зарубежные аналоги — 8031, 80С31. При отсутствии микросхемы 193ИЕЗ можно заменить ее К500ИЕ137, включив ее по типовой схеме.
Видео, как собрать частотомер на одной микросхеме:
Источник