Как сделать картридж для денди своими руками
#0. Введение.
Dendy или Де́нди — игровая приставка, неофициальный аппаратный клон консоли третьего поколения Famicom (в США и Европе известной как Nintendo Entertainment System) японской фирмы Nintendo. В основу Dendy был положен японский конструктив аппаратной части и формат картриджа, несколько отличавшийся от американского. Dendy выпускалась с конца 1992 года компанией Steepler, собиралась на Тайване из китайских комплектующих по заказу Steepler и была распространена в республиках бывшего СССР, особенно в России, на Украине и в Казахстане. Поскольку на постсоветском пространстве NES официально никогда не продавалась, Dendy, которая была широко распространена и доступна по цене, в своё время снискала большую популярность.
Когда-то в детстве я мечтал о персональном компьютере. Частью мечты была мысль о том, что когда он у меня будет, я с легкостью смогу записывать на картриджи для Dendy другие игры и даже копировать сами картриджи друг на друга. Но всё оказалось гораздо сложнее. Сложностью было то, что я не заканчивал никаких вузов или даже пту по специальностям связанным с микроэлектроникой и по большому счету, сейчас я просто собираю схемы без особого осознания, как же там всё на самом деле работает. Текущих знаний хватает, чтобы заниматься подобным увлечением.
Обычный поиск в интернете дает очень мало информации, как сделать самому картридж для Dendy. Поэтому решил я в этом разобраться и собрать всё в один документ, чтобы у простых людей (у не простых людей всё в порядке, они такие вещи, наверно, во сне собирают, для них это не сложно) больше не возникало сложностей в этой области.
Не без помощи таких же увлеченных людей, я получил некоторые схемы и подобия схем по подключению различных мапперов в картриджах для Dendy. Разобравшись, я развел печатные платы и лично проверил работоспособность всех изготовленных картриджей. Во вложениях к данному документу вы сможете найти все печатные платы в формате Sprint Layout 6.
Технология создания картриджей, изложенная в данном документе, является просто, примером того, как это можно было бы выполнить, при желании можно сделать как угодно.
Единственное, что нужно понимать, это то, что если вы решились на подобную модификацию, то вся ответственность ложиться только на вас. Если приставка выйдет из строя или случиться ещё что-нибудь более страшное, то в этом виноваты будете только вы, и никто другой!
Если вы уверены в своих силах, то желаю Удачи в строительстве картриджей!
Начало.
Первое, с чего нужно начать, это закупиться нужными радиодеталями. Для создания разных моделей картриджей, нужны будут разные детальки. В первую очередь нужно раздобыть двухсторонний текстолит толщиной 1.5мм, он отлично входит в разъем для картриджа Dendy. В документе я рассмотрю картриджи на мапперах NROM, CNROM, AxROM (AOROM, AMROM, ANROM), UxROM (UNROM, UOROM). Опционально нам нужны будут следующие компоненты: 74ls161, 74ls02, 74ls32, микросхемы пзу от 64КБит до 2МБит, и панельки к ним (я предпочитаю использовать микросхемы в plcc корпусах), диоды 1N4148, керамические конденсаторы на 0.1 мкф. Ни в коем случае не торопитесь в процессе создания картриджей для денди, спешка может испортить всё.
Будем использовать следующий pinout разъема картриджа денди. Все приведенные в данном документе схемы, буду опираться именно на такую распиновку разъема.
Ниже можно скачать список игр с подписанными мапперами и список мапперов
Источник
Алексей «Кластер» Авдюхин
Posted on 7 августа, 2015
Самодельные картриджи для Dendy/Famicom
После моей статьи про дампер картриджей (которую пока что оставили на Хабре почему-то), меня очень много раз просили рассказать, как собирать и записывать картриджи для Денди/Famicom самому. Да, это очень избитая тема, даже в древних номерах журнала «Радио» про это можно было почитать, но прогресс не стоит на месте. Рассмотрим эту тему с точки зрения современных компонентов. Тем более, по-моему, она идеально подходит для изучения азов работы с ПЛИС, именно на этом я и сам учился.
Начать, наверное, нужно с того что, картриджи, которые продавались и продолжают продаваться в наших магазинах, перезаписать, увы, не получится (на самом деле некоторые можно, но об этом в другой раз). Связано это с тем, что в них установлена обычная EPROM память, которую можно записать только один раз. Однако, ничто не мешает собрать свой собственный картридж с нуля.
Напомню, что картридж включается прямо в шину CPU и в шину PPU, а соответственно в первую очередь содержит две микросхемы памяти с параллельным доступом: PRG — к ней обращается процессор, и она содержит непосредственно код игры, и CHR — с ней работает PPU (графический процессор), и она содержит изображения. При чём последняя запросто может быть не ПЗУ, а оперативной памятью, куда уже в процессе игры записываются данные.
Таким образом, самый простой картридж можно сделать из любых двух микросхем памяти с параллельным доступом, будь то хоть EPROM, хоть flash. При этом больше ничего из обвязки не нужно. Например, вот так выглядел мой первый самодельный картридж:
Микросхемы просто подключаются напрямую к соответствующим выводам на разъёме картриджа. Ноги /RD можно припаять напрямую к земле, ведь консоль всегда будет только читать данные, но я записывал данные уже после сборки картриджа, с помощью всё того же дампера, поэтому подключил все выводы как положено. Биты адреса и данных при этом перепутаны местами, но это абсолютно не имеет значения. Внизу можно увидеть перемычку, которая определяет «mirroring» — как будет зеркалироваться видеопамять: горизонтально или вертикально. Это зависит от игры, и в простейших играх определялось именно перемычкой на картридже.
И ещё очень важный момент — активировать нашу память нужно только тогда, когда консоль обращается к картриджу, иначе будет возникать конфликт на шине. Для этого у микросхем есть вывод /CE (chip enable), который включает память. Тут в ход идёт достаточно простая математика. Программная (PRG) память картриджа начинается с адреса $8000 и заканчивается $FFFF, это два в пятнадцатой степени. Графическая (CHR) память картриджа начинается с адреса $0000 и заканчивается $1FFF, имея объём в 8 килобайт, а это два в тринадцатой степени. Соответственно включать нашу память надо пятнадцатым и тринадцатым контактом на адресной шине. На разъёме картриджа уже есть специальные выводы, которые выдают необходимый нам сигнал. Более того, в случае с PRG памятью нужный нам контакт так и называется — /ROMSEL — сокращённо от ROM Select. Туда консоль выдаёт 0 вольт, когда обращается к памяти картриджа в районе между $8000 и $FFFF. Всё проще некуда.
Однако, на такой картридж можно будет записать только самые простейшие игры. Более серьёзные уже используют картриджи с мапперами, чтобы увеличить максимальный объём игры. Попробую объяснить, как они работали.
У памяти с параллельным доступом каждый бит адреса задаётся отдельным выводом у микросхемы. В разъёме для картриджа есть выводы A0-A14 (15 выводов) для PRG памяти. Это соответственно 15 бит адреса, которые дают 32768 комбинаций единиц и нолей, т.е. позволяют адресовать 32 килобайта. Для CHR памяти там соответственно выводы A0-A13, это 16384 комбинаций, т.е. 16 килобайт, но половина из них отдана памяти внутри консоли.
Уже в восьмидесятые годы таких объёмов стало не хватать. Конечно ничто не мешает поставить в картридж память бОльшего объёма, но у такой памяти и адресных выводов больше. Не трудно посчитать, что каждый дополнительный вывод увеличивает количество возможных адресов ровно в два раза. Но куда их подключать, если количество контактов в разъёме картриджа ограничено? Вот тут на помощь и приходят мапперы, именно они управляют дополнительными выводами в зависимости от различных условий. Почти всегда такими условиями является попытка запись в PRG-область памяти картриджа. Да, в ту, куда нельзя ничего записать.
Многие игры используют для этих целей простейшие логические микросхемы. Например, в картридже у Battletoads стоит четырёхбитный счётчик 74161, который используется как триггер. При записи по любому адресу от $8000 до $FFFF он запоминает записанное значение и выдаёт его на те самые дополнительные выводы у памяти, он же переключает мирроринг.
Но большинство игр использует для этого более сложные микросхемы, которые разработаны специально для этих целей.
Они, как правило, умеют уже переключать разные банки для разных областей памяти, управлять дополнительной памятью, генерировать прерывания, а иногда даже расширять вычислительные мощности консоли.
В качестве примера возьмём самый популярный маппер — MMC3. О нём во всех подробностях можно почитать тут: http://wiki.nesdev.com/w/index.php/MMC3
Первым делом читаем, как происходит взаимодействием с ним. А происходит оно через запись по определённым адресам, их 8 групп: $8000-$9FFE (чётные), $8001-$9FFF (нечётные), $A000-$BFFE (чётные), $A001-$BFFF (нечётные), $C000-$DFFE (чётные), $C001-$DFFF (нечётные), $E000-$FFFE (чётные) и $E001-$FFFF (нечётные). Запись по любому адресу внутри группы равнозначна. Видите закономерность? Регистр выбирается с помощью трёх адресных бит: A0, A13 и A14, остальные же значения не имеют.
Попробуем же имитировать работу маппера с помощью ПЛИС. Код я пишу на языке Verilog. Он тут не подсвечивается, прошу прощения за это.
Сначала описываем наши регистры, которые хранят текущее состояние:
reg [2:0] bank_select;
reg prg_mode;
reg chr_mode;
reg [7:0] r [0:7];
reg mirroring;
reg [7:6] ram_protect;
reg [7:0] irq_latch;
reg [7:0] irq_counter;
reg [2:0] a12_low_time;
reg irq_reload;
reg irq_reload_clear;
reg irq_enabled;
Описываем реакцию на запись по соответствующим адресам. Возрастающий сигнал /ROMSEL говорим о том что было обращение к памяти картриджа, т.е. по адресам $8000-$FFFF, нам надо реагировать именно в этот момент.
always @ (posedge romsel)
begin
// Но только если это была запись
if (cpu_rw_in == 0)
begin
// Рассматриваем состояние A14, A13 и A0, обновляем соответствующие регистры
case (
3’b000: begin // $8000-$9FFE, even
bank_select Category: Мои статьи Tags: dendy, famicom, nes, денди, картриджи, маппер, плис
Источник
Самодельные картриджи для Dendy/Famicom
После моей статьи про дампер картриджей (которую пока что оставили на Хабре почему-то), меня очень много раз просили рассказать, как собирать и записывать картриджи для Денди/Famicom самому. Да, это очень избитая тема, даже в древних номерах журнала «Радио» про это можно было почитать, но прогресс не стоит на месте. Рассмотрим эту тему с точки зрения современных компонентов. Тем более, по-моему, она идеально подходит для изучения азов работы с ПЛИС, именно на этом я и сам учился.
Как и в прошлый раз, эта публикация в двух форматах: развлекательное видео попроще (да, уже третья серия) и обычная статья с более детальной информацией. Кому как больше нравится, но лучше посмотрите и то, и другое.
Видео:
Статья:
Начать, наверное, нужно с того что, картриджи, которые продавались и продолжают продаваться в наших магазинах, перезаписать, увы, не получится (на самом деле некоторые можно, но об этом в другой раз). Связано это с тем, что в них установлена обычная EPROM память, которую можно записать только один раз. Однако, ничто не мешает собрать свой собственный картридж с нуля.
Напомню, что картридж включается прямо в шину CPU и в шину PPU, а соответственно в первую очередь содержит две микросхемы памяти с параллельным доступом: PRG — к ней обращается процессор, и она содержит непосредственно код игры, и CHR — с ней работает PPU (графический процессор), и она содержит изображения. При чём последняя запросто может быть не ПЗУ, а оперативной памятью, куда уже в процессе игры записываются данные.
Таким образом, самый простой картридж можно сделать из любых двух микросхем памяти с параллельным доступом, будь то хоть EPROM, хоть flash. При этом больше ничего из обвязки не нужно. Например, вот так выглядел мой первый самодельный картридж:
Микросхемы просто подключаются напрямую к соответствующим выводам на разъёме картриджа. Ноги /RD можно припаять напрямую к земле, ведь консоль всегда будет только читать данные, но я записывал данные уже после сборки картриджа, с помощью всё того же дампера, поэтому подключил все выводы как положено. Биты адреса и данных при этом перепутаны местами, но это абсолютно не имеет значения. Внизу можно увидеть перемычку, которая определяет «mirroring» — как будет зеркалироваться видеопамять: горизонтально или вертикально. Это зависит от игры, и в простейших играх определялось именно перемычкой на картридже.
И ещё очень важный момент — активировать нашу память нужно только тогда, когда консоль обращается к картриджу, иначе будет возникать конфликт на шине. Для этого у микросхем есть вывод /CE (chip enable), который включает память. Тут в ход идёт достаточно простая математика. Программная (PRG) память картриджа начинается с адреса $8000 и заканчивается $FFFF, это два в пятнадцатой степени. Графическая (CHR) память картриджа начинается с адреса $0000 и заканчивается $1FFF, имея объём в 8 килобайт, а это два в тринадцатой степени. Соответственно включать нашу память надо пятнадцатым и тринадцатым контактом на адресной шине. На разъёме картриджа уже есть специальные выводы, которые выдают необходимый нам сигнал. Более того, в случае с PRG памятью нужный нам контакт так и называется — /ROMSEL — сокращённо от ROM Select. Туда консоль выдаёт 0 вольт, когда обращается к памяти картриджа в районе между $8000 и $FFFF. Всё проще некуда.
Однако, на такой картридж можно будет записать только самые простейшие игры. Более серьёзные уже используют картриджи с мапперами, чтобы увеличить максимальный объём игры. Попробую объяснить, как они работали.
У памяти с параллельным доступом каждый бит адреса задаётся отдельным выводом у микросхемы. В разъёме для картриджа есть выводы A0-A14 (15 выводов) для PRG памяти. Это соответственно 15 бит адреса, которые дают 32768 комбинаций единиц и нолей, т.е. позволяют адресовать 32 килобайта. Для CHR памяти там соответственно выводы A0-A13, это 16384 комбинаций, т.е. 16 килобайт, но половина из них отдана памяти внутри консоли.
Уже в восьмидесятые годы таких объёмов стало не хватать. Конечно ничто не мешает поставить в картридж память бОльшего объёма, но у такой памяти и адресных выводов больше. Не трудно посчитать, что каждый дополнительный вывод увеличивает количество возможных адресов ровно в два раза. Но куда их подключать, если количество контактов в разъёме картриджа ограничено? Вот тут на помощь и приходят мапперы, именно они управляют дополнительными выводами в зависимости от различных условий. Почти всегда такими условиями является попытка запись в PRG-область памяти картриджа. Да, в ту, куда нельзя ничего записать.
Многие игры используют для этих целей простейшие логические микросхемы. Например, в картридже у Battletoads стоит четырёхбитный счётчик 74161, который используется как триггер. При записи по любому адресу от $8000 до $FFFF он запоминает записанное значение и выдаёт его на те самые дополнительные выводы у памяти, он же переключает мирроринг.
Но большинство игр использует для этого более сложные микросхемы, которые разработаны специально для этих целей.
Они, как правило, умеют уже переключать разные банки для разных областей памяти, управлять дополнительной памятью, генерировать прерывания, а иногда даже расширять вычислительные мощности консоли.
В качестве примера возьмём самый популярный маппер — MMC3. О нём во всех подробностях можно почитать тут: wiki.nesdev.com/w/index.php/MMC3
Первым делом читаем, как происходит взаимодействием с ним. А происходит оно через запись по определённым адресам, их 8 групп: $8000-$9FFE (чётные), $8001-$9FFF (нечётные), $A000-$BFFE (чётные), $A001-$BFFF (нечётные), $C000-$DFFE (чётные), $C001-$DFFF (нечётные), $E000-$FFFE (чётные) и $E001-$FFFF (нечётные). Запись по любому адресу внутри группы равнозначна. Видите закономерность? Регистр выбирается с помощью трёх адресных бит: A0, A13 и A14, остальные же значения не имеют.
Попробуем же имитировать работу маппера с помощью ПЛИС. Код я пишу на языке Verilog. Он тут не подсвечивается, прошу прощения за это.
Сначала описываем наши регистры, которые хранят текущее состояние:
Описываем реакцию на запись по соответствующим адресам. Возрастающий сигнал /ROMSEL говорим о том что было обращение к памяти картриджа, т.е. по адресам $8000-$FFFF, нам надо реагировать именно в этот момент.
Теперь же опишем, какой должен выбираться банк при обращении к соответствующей части памяти в зависимости от наших регистров.
Переключаются они в соответствии с такой таблицей:
Где $8000 & #$40 — это у нас prg_mode, а -2 и -1 — это предпоследний и последний банк соответственно. Получается такой код:
Теперь CHR. Там такая схема:
Где $8000 & #$40 — это chr_mode. Получается так:
Режим зеркалирования описывается всего одной строкой. В зависимости от него мы замыкаем вывод картриджа CIRAM A10 либо на A10, либо на A11:
Дальше сложнее. MMC3 умеет генерировать прерывания, когда на экране рисуется определённая строка. Это весьма полезно, и игры часто это используют. Строки на экране считаются с помощью обращений к A12 у PPU. При типичных настройках сигнал на A12 переходит из логического 0 в логическую 1 ровно один раз за строку, если не считать кратковременные переходы в 0. А их надо не считать, это всё немного усложняет:
Ах да, MMC3 поддерживает ещё подключение дополнительной оперативной памяти по адресу $6000-$7FFF! Надо не забыть и это описать:
Вот и всё, наш MMC3 готов! Полный код можно посмотреть тут: https://github.com/ClusterM/nes_mappers/blob/master/4%20(MMC3)/MMC3.v
В том же репозитории есть коды многих других мапперов.
На самом деле собрать картридж для какой-то одной определённой игры весьма просто, ведь нужно будет установить только необходимые компоненты. А вот сделать универсальный картридж гораздо сложнее.Если установить ПЛИС на 128 макроячеек, flash на 512 килобайт для PRG, flash на 512 килобайт для CHR, SRAM на 32 килобайта для CHR, SRAM на 32 килобайта в качестве дополнительной памяти, питание которой поддерживается батарейкой для игр, которые умеют сохраняться, то на нём пойдёт уже около 90%-95% игр. Схема получается весьма замороченная, я долго вручную рисовал плату под всё это дело. Кстати, при выборе компонентов не стоит забывать, что у Famicom/Dendy пятивольтовые уровни. Китайцы сейчас очень часто это игнорируют.
Первая ревизия моего универсального картриджа выглядела как-то так:
Ну и программу для записи игр написал конечно же:
Как видите, всё не так сложно, если немного посидеть и разобраться в принципах работы.
Источник