- 2 Схемы
- Простой Люксметр: обзор и схема
- Использование люксметра
- Принципиальная схема люксметра
- Выводы
- Цифровой люксметр (измеритель освещённости) своими руками
- Как сделать люксметр своими руками
- Компоненты для изготовления люксметра
- Электрическая схема люксметра
- Конструктив
- Изготовление корпуса
- Батарейный отсек
- Монтаж и пайка
- Сенсор освещенности
- Программирование люксметра
- Испытание люксметра
- Характеристики прибора
- Выводы
- Планы на будущее
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Простой Люксметр: обзор и схема
Люксметр — это прибор для измерения освещенности, по своей сути он представляет собой фотоэлемент, подключенный к микроамперметру, который калиброван единицах освещенности – люксах. Один люкс равен освещённости поверхности сферы радиусом 1 м, создаваемой точечным источником света, находящимся в её центре, силой света в 1 кд [ru.wikipedia.org/wiki/Люкс]. Один люкс это довольно малая величина, на практике приходится иметь дело с освещенностями измеряемыми сотнями и тысячами люкс.
Для примера приведем таблицу типичных значений освещенности в разных условиях:
Тип помещения | Освещенность, лк |
Комнаты операторов ЭВМ | 400 |
Проектные залы, конструкторские комнаты | 500 |
Производственный цех, работы малой точности | 150-250 |
Производственный цех, работы средней точности | 250-350 |
Производственный цех, работы высокой точности | 400-500 |
Производственный цех, работы наивысшей точности | 1000-5000 |
Аудитории, учебные кабинеты (ВУЗы, техникумы) | 400-500 |
Посадочные площадки общественного транспорта | 10 |
Парковая зона | 2 |
Данный прибор размещается в кожаном кофре с ремнем для переноски.
Внутри имеется ряд отделений и креплений для всех деталей люксметра.
В большом отделении располагается непосредственно сам прибор. Корпус прибора выполнен из пластика. Габариты корпуса 210 х 125 х 75 мм.
К крышке пристегнут фотоэлемент. Диаметр фотоэлемента составляет 85 мм, провод для подключения к люксметру имеет длину 1,4 м.
Следует заметить, что в кофре имеется отверстие для разъема, так что можно подключить фотоэлемент не извлекая люксметр из кофра.
Кроме этого в кофре имеется два небольших отделение для хранения ослабляющих насадок для измерения большой освещенности. В комплект входим насадки М, Р, Т дающие ослабление в 10, 100 и 1000 раз, вместе с ними обязательно надевается насадка К.
Насадка М, дающая ослабление в 10 раз
Насадка Р, дающая ослабление в 100 раз
Насадка Т, дающая ослабление в 1000 раз затерялась за давностью лет.
Использование люксметра
Для проведения измерений необходимо подключить фотоэлемент к разъему на корпусе люксметра. При этом надо соблюдать полярность, что бы стрелка прибора отклонялась в правильном направлении. Никаких ключей на разъеме нет, хотя возможно разъем данного прибора самодельный. Собственно внутреннее устройство данного люксметра весьма незамысловато. Это просто микроамперметр, к которому подключен фотоэлемент. Кроме этого на передней панели располагается две кнопки с фиксацией для переключения пределов измерения. Эти кнопки коммутируют резисторы в делителе напряжения. Открутив четыре винта на задней стенке корпуса, можно познакомиться с небогатым внутренним миром люксметра.
Принципиальная схема люксметра
Следует заметить, что прибор не имеет источника питания.
Непосредственно, без масок прибор способен измерять низкие освещенности в 30 и 100 люкс. Под кнопками проставлены пределы измерения прибора с соответствующими насадками. Насадки М, Р, Т надеваются на фотоэлемент и фиксируются сверху насадкой К.
При не нажатых кнопках прибор отключен. При нажатой левой кнопке отсчет следует вести по шкале с 30 делениями, при нажатой правой кнопке следует использовать шкалу со 100 делениями. На фото ниже на люксметр надета насадка Р, предел измерения до 1000 Лк.
Выводы
В целом, неплохой прибор, вполне способный выполнять свои функции, хотя сейчас его удел — служить наглядным пособием. Простота прибора делает возможным его копирование даже для самых начинающих радиолюбителей. Автор обзора — Denev.
Источник
Цифровой люксметр (измеритель освещённости) своими руками
Во время учебного процесса потребовался нам в кабинет охраны труда прибор для измерения освещённости — люксметр. Передо мной стала задача решить проблему отсутствия такого прибора в кратчайшие сроки наиболее эффективным методом. Исходя из этого, пришлось разрабатывать и собирать люксметр из того, что было.
Общие сведения.
Сердцем люксметра является микроконтроллер Atmega8. В качестве датчика освещённости применен фоторезистор. Поскольку модель этого фоторезистора неизвестна, а соответственно, неизвестны и его параметры, то в схеме предусмотрена возможность калибровки.
Также, важной особенностью является то, что фоторезистор — нелинейный элемент. То есть при изменении освещенности на одну и ту же величину, его сопротивление изменяется неодинаково. Поэтому для обработки нелинейного сигнала был применён метод, который называется «линейно-кусочная аппроксимация». Вдаваться в подробности этого метода в рамках этой статьи нет смысла, так как это довольно обширная тема, хотя и ничего особо сложного в ней нет. Возможно, об этом методе будет написана отдельная статья.
Данная характеристика была снята при помощи программы «Люксметр» на смартфоне Android. Конечно, цифровые значения с характеристики носят характер приблизительных, однако позволяют понять принцип изменения параметров датчика. Не забываем также про возможность калибровки. Отмечу, что прибор получился довольно точный.
В качестве стабилизатора напряжение применён классический интегральный линейный стабилизатор L7805. Запитывать устройство можно как и от батарейки типа 6F22 («Крона»), либо от любого другого источника питания напряжением 6-30 В.
Принцип работы схемы.
Сигнал с резистивного делителя LDR1-RV1, в одном плече которого установлен фоторезистор, поступает на вход ADC1 микроконтроллера. АЦП микроконтроллера производит измерение и преобразование результата. Потенциометр RV1 предназначен для калибровки прибора. Его значение не обязательно должно быть 3.3 кОм. В моём случае установлен многооборотный подстроечный резистор на 15 кОм (что было под рукой).
Вывод результатов измерений производится на двухстрочный индикатор WH1602 (на контроллере HD44780), который подключен к микроконтроллеру по 4-битной шине. Потенциометр RV2 также может иметь любой номинал. Он предназначен для регулировки контрастности дисплея. Вывод движка потенциометра подключен на вывод VEE индикатора (иногда встречается V0), а два крайних вывода к +5 В и земле соответственно. При включении устройства на дисплее может ничего не высветиться. Для устранения этого вращаем вращаем ручку подстроечного резистора RV2 и добиваемся чёткого изображения.
Если показания будут прыгать или быстро изменяться, то рекомендую запаять параллельно фоторезистору электролитический конденсатор ёмкостью около 50 мкФ (не критично). Такой эффект может возникать в результате мешающего влияния электромагнитных полей, окружающих нас. У меня изначально фоторезистор был установлен на плате и такой проблемы не было. Но когда я его сделал выносным для монтажа в корпусе, несмотря на то, что длина проводов была небольшой, появилась такая проблема. Всё решилось после установки конденсатора.
В программе производится усреднение значения по 60 замерам, что довольно неплохо.
Максимально измеряемое значение составляет около 2500 Лк. Для измерения в помещениях этого достаточно. А для измерения на улице (тем более, в солнечную погоду) требуется уже другой прибор — измеритель КЕО (коэффициента естественного освещения).
Фотографии готового устройства.
Печатная плата получилась не совсем удачной, т.к. были проблемы с принтером. Из-за этого пришлось делать широкие дорожки и размеры платы получились довольно большими (хотя для меня это не критично). Если применить SMD компоненты, то получится совсем миниатюрное устройство.
В последствии, «Крона» была заменена на 4 пальчиковых батарейки типа AA.
Источник
Как сделать люксметр своими руками
Изготавливая различные светодиодные светильники часто хочется иметь под рукой люксметр для проверки освещенности которую дают готовые приборы.
А почему бы не собрать самому несложный прибор?
Чтобы не возиться с калибровкой, решил взять за основу цифровой датчик со встроенным АЦП и интерфейсом I2C.
Таких в обозримой доступности нашел несколько:
Решил начать с простого и дешевого BH1750
Компоненты для изготовления люксметра
- Плата Arduino Pro Mini — $1,75
- Цифровой датчик освещенности BH1750FVI — $2.2
- Графический дисплей NOKIA5110 — $2.5
- Приборный корпус с TAOBAO 134x70x25 — $0.25 (без учета доставки)
- Пара кнопок, транзисторы, резисторы провода, макетная плата?
- В качестве источника питания литиевые батареи от старого телефона
Общий бюджет в пределе $10
Электрическая схема люксметра
Конструктив
Изготовление корпуса
Размечаю окно под дисплей и дырки под кнопки
Делаю отверстия и ровняю из гравером
Примеряю плату с деталями
Подгоняю, проверяю отверстия
Батарейный отсек
Изготавливаю из старой заглушки от системного блока. Размягчаю феном, подгоняю под аккумулятор и вставляю две пружинки — контакты аккумулятора
Припаиваю провода к контактам и креплю батарейный отсек в корпусе на «холодную сварку»
После высыхания этого «чудо пластилина» получаю вполне надежное крепление аккумулятора в корпусе с возможностью его быстрого извлечения для зарядки
Монтаж и пайка
Размещаю все компоненты на макетной плате
Сенсор освещенности
Под рукой оказалась прозрачная коробочка от SD-карточки. Поместил модуль освещенности пока туда, хотя выглядит достаточно неказисто. На отрезке гибкого 4-х жильного телефонного провода обжал разъемчики в стиле Ардуино
Собираю все вместе
Рисую в графическом пакете макет надписей на верхнюю крышку и печатаю в зеркальном виде на прозрачную пленку, а затем приклеиваю ее к крышке
И вот готовый вид прибора
Программирование люксметра
Теперь можно подключить к разъемам ардуины преобразователь USB/SERIAL и начинать программировать
Для работы с дисплеем 5110 по любым 5-ти дискретным выводам использую библиотеку Adafruit-PCD8544-Nokia-5110-LCD-library и графическую библиотеку Adafruit-GFX-Library
Остальное из стандартного набора Arduino IDE
Микроконтроллер постоянно находится в режиме SLEEP_POWER_DOWN И включается/выключается длительным (более 2 сек) нажатием на кнопку питания. Ток в отключенном режиме порядка 100 мкА. Это достигнуто тем, что с платы демонтирован светодиод питания, аккумулятор заведен на контроллер минуя стабилизатор напряжения, включение всей периферии производится микроконтроллером через транзисторы. Все выходы при выключении переводятся в режим выхода в низкое состояние (LOW).
В рабочем режиме с периодичностью 1 сек выводятся показания датчика освещенности и напряжение аккумулятора.
Напряжение питания сравнивается с внутренним опорным напряжением 1.1В по методике описанной в этой статье
Испытание люксметра
Для проверки показаний взят простой прибор DT-1300
Разница показаний примерно 2-4%, что вполне укладывается в точность DT-1300 5%
Там где освещение не равномерное разница увеличивается из за отличий в форме датчиков приборов
Прошелся по комнатам с различными светильниками
- Люстра с эффектом бесконечности дает освещенность 100-110 лк в центре комнаты, уменьшаясь до 75-80 лк по углам. Включение направленной подсветки — 400 лк на поверхности стола
- Встраиваемые светильники в корпусе GX-70 — 125-135 лк
- COB-матрица в ванной комнате — 120-130 лк
- Настольная лампа на COB 20 Вт — 500-1000 лк в зависимости от зоны стола и направленности светильника
Характеристики прибора
- Диапазон измерения 1 — 65535 лк
- Разрешение измерения 1 лк
- Потребляемый ток в режиме измерения 60мА
- Ток в режиме ожидания (PowerDown) 100мкА
- Габариты 134 x 70 х 25 мм
Выводы
Прибор получился вполне годный для домашнего применения при сравнительно небольших затратах
Что не понравилось
- Конструкция выносного сенсора. Буду модернизировать, когда найду подходящее решение
- Дешевый экран NOKIA5110 очень слепой что с подсветкой, что без. Подсветка очень неравномерная.
- С кнопкой питания и режимами сна можно было так не заморачиваться, а просто поставить выключатель с фиксацией и размыкать цепь питания батареи
Планы на будущее
- Добавить некоторые функции, например автоматического отключения питания по истечении времени. Задействовать вторую кнопку.
- Добавить настройки контрастности дисплея и яркости подсветки с сохранением результатов в EEPROM.
- Сделать разъем для подключения разных датчиков и автоопределение их при включении. Подключить к прибору TSL2561, датчик измерения ультрафиолета, датчик цвета и т.д.
- Разработать алгоритм измерения пульсаций света (при измерении с короткой временной задержкой считать разницу между минимумом и максимом в процентах)
В общем есть чему порадоваться и о чем задуматься
Источник