Как сделать маятник капицы своими руками
«Чайка по имени Джонатан Ливингстон»
Движение – это изменение места положения объекта, процесс, происходящий как в пространстве, так и во времени. Мы существуем в движении, благодаря тому, что находимся на поверхности планеты, летящей в космосе вокруг Солнца, и вместе с ним в Галактике. С другой стороны, каждая частица вещества материальных объектов является эфиродинамическим процессом, более или менее устойчивым вихревым потоком эфирной среды. Таким образом, в реальном мире нет ничего неподвижного, все объекты находятся в движении. Мы замечаем движение, как изменение места положения, или другое изменение параметров процесса существования материи. Процесс движения не может останавливаться до тех пор, пока материя существует. С данной точки зрения, мы будем рассматривать способы создания движущей силы, действующей на тело, не забывая о том, что все материальные объекты состоят из микрочастиц, и находятся на поверхности нашей планеты. Говоря о перемещении тел, необходимо понимать, что при этом, так или иначе, приходит в движение комплекс частиц материи, существующий при определенных условиях.
Практическое применение процесса движения состоит в том, чтобы перемещать объект, например, пассажиров и груз, из одной точки пространства в другую, по возможности, с минимальными затратами времени. Процесс движения, обычно, происходит с некоторой скоростью, но, как любое другое явление, имеет два «предельных случая»: в одном из них, тело мгновенно меняет местоположение в пространстве, а во втором, тело мгновенно меняет свое положение на оси времени. Первый случай относится к телепортации, а второй – к перемещениям во времени, без изменения положения в пространстве. Мы рассмотрим различные направления развития технологий перемещения в пространстве и времени, включая и эти два предельных случая.
Обычные способы перемещения нам хорошо известны, основной из них – реактивный. Пешеход отталкивается от опоры ногами, автомобиль отталкивается от опоры при вращении колеса, и при этом, опора отталкивается назад, а транспорт получает реактивный импульс, и движется вперед. Лодка может приводиться в движение веслами, водометом или винтом, отталкивая назад воду, создавая реактивный эффект. При таком способе, строго выполняется закон сохранения импульса, который всем нам хорошо знаком: в результате реактивного взаимодействия, каждое из тел получает одинаковый импульс, который равен произведению массы и скорости, для каждого из двух взаимодействующих тел. Ракетные движители, винтовые или турбореактивные самолеты, и другая техника работает в точном соответствии с данным законом сохранения импульса.
Ускорение летательного аппарата, например, ракеты, зависит от того, как много, и с какой скоростью, топливо будет выбрасываться через сопло ракеты во внешнюю среду. Отметим, что, для создания движущей силы, любой реактивный аппарат тратит энергию, чтобы придать ускоренное движение реактивной массе. При этом, выбрасываемое во внешнюю среду топливо увеличивает кинетическую энергию молекул среды, в конечном итоге, увеличивая температуру окружающей среды, нагревая ее. В таком случае, можно сказать, что увеличение тепловой энергии, кинетической энергии молекул окружающей среды, эквивалентно увеличению кинетической энергии летательного аппарата, или другого движущегося тела, использующего реактивный принцип. В этом проявляется закон сохранения импульса и энергии.
Существуют другие, давно известные методы, похожие на реактивный принцип. Эти методы также работают в строгом соответствии с законом сохранения импульса, но в обратном направлении, а именно, за счет уменьшения тепловой энергии окружающей среды. Например, парусник приводится в движение не так, как лодка или катер: он тормозит движущийся поток среды (воздух) своим парусом, что изменяет (уменьшает) кинетическую энергию потока частиц окружающей среды, для того, чтобы увеличить скорость (кинетическую энергию) парусника.
Поскольку термин «реактивный» означает «противодействующий», то принцип, противоположный реактивному, можно называть «активным», то есть «действующим». В реактивных движителях, сила, действующая на транспортное средство, создается, как реакция на увеличение энергии окружающей среды. Реактивные движители требуют источник энергии, для своей работы. В активных движителях, действующая сила создается за счет поглощения энергии окружающее среды. Благодаря этому свойству, активные движители могут служить источниками энергии, при своей работе.
В главе о нанотехнологиях мы рассмотрим метод, позволяющий создать движущую силу без затрат топлива, за счет специального рельефа поверхности наноматериала, обеспечивающего отбор кинетической энергии молекул воздуха, или другой окружающей среды. Данный материал назван «силовой активный материал». Наличие ветра, в данном случае, не имеет значения, так как при масштабах около 100 нанометров, можно сказать, что «ветер есть всегда». Молекулы воздуха, при обычном атмосферном давлении и комнатной температуре, хаотически двигаются со скоростью 500 метров в секунду, но каждая из них движется прямолинейно, без столкновений, только на небольших участках своей траектории, длиной примерно 50 – 100 нанометров. Это движение можно использовать, создав, с помощью современных нанотехнологий, специальный упорядоченный рельеф поверхности.
Итак, известные нам принципы создания движущей силы для ускорения транспортного средства работают за счет взаимодействия с окружающей средой, в соответствии с законами сохранения импульса и энергии, и другого не дано. Отдельно можно отметить, что выполнение данных законов не требует выброса реактивной массы за пределы корпуса транспортного средства, в том числе, и в ракетной и космической технике. Существуют известные технические решения, позволяющие получить реактивный макроимпульс, действующий на корпус транспортного средства, при выбросе сгораемого топлива из движителя в своеобразный «глушитель», находящийся внутри корпуса транспортного средства. В данном «глушителе», микроимпульсы частиц реактивной струи топлива теряют свою кинетическую энергию, и она переходит в окружающую среду в виде теплового излучения. При таком способе создания движущей силы, охлажденная рабочая реактивная масса вещества может быть возвращена в камеру сгорания, где она будет использоваться в новых циклах «нагрева – выброса – охлаждения – возврата».
Рассматривая движение в воздухе, в воде или на поверхности опоры (дороги), мы можем описать почти все известные нам конструкции движителей транспортных средств. Все они являются реактивными или активными движителями. Не являются исключением и так называемые инерциоиды – устройства, использующие для создания движущей силы свойство тел, которое мы обычно называем «инерциальной массой». В главе про инерциоиды, мы рассмотрим физический механизм возникновения инерции при ускоренном движении тел и варианты его практического использования, с точки зрения эфирной теории.
Отдельно от активных и реактивных методов, имеет смысл показать такие способы создания движущей (подъемной) силы, которые обусловлены градиентом давления среды. Перепад давления заставляет воздушный шар подниматься вверх. Теория воздухоплавания проста: окружающая среда имеет градиент плотности, а поскольку плотность среды внутри шара меньше, чем снаружи, то давление окружающей среды вытесняет шар вверх. Аналогично, сила Архимеда заставляет всплывать тела меньшей плотности, чем вода. Градиент давления в среде, в данных случаях, создает гравитационное поле планеты. По этой причине, эти силы действуют в вертикальном направлении.
Разность давления среды возникает также при относительном движении крыла, имеющего профиль Жуковского – Чаплыгина, и окружающей среды, что создает подъемную силу, действующую на крыло со стороны среды. Градиент давления среды работает похожим образом в известном «эффекте Магнуса», который будет рассмотрен в отдельной главе. Силы такой природы могут быть направлены в любую сторону, что выгодно отличает данный метод от методов воздухоплавания.
Источник
Кривошипно-шатунный механизм (КШМ). Маятник Капицы
Данная статья является вводной теорией к занятию по робототехнике «Кривошипно-шатунный механизм из Lego EV3″
Первые КШМ
Первые упоминания об использовании кривошипно-шатунного механизма можно отнести ко временам Древнего Рима (примерно III век н.э.). Машина для распиливания каменных блоков передавала вращение от водяного колеса с помощью зубчатой передачи на кривошипно-шатунный механизм, который преобразовывал вращательное движение в возвратно-поступательное движение полотна пилы. Также такие устройства могли использоваться на древних лесопилках.
Схема водяного древнеримского распиловочного станка с КШМ
Большого распространения такие машины не получили – деревянные части из-за большого количества трущихся деталей быстро изнашивались и требовали частого ремонта, а рабский труд был намного дешевле и не требовал большой квалификации рабочих.
В XVI веке кривошипно-шатунный механизм появился на деревянных самопрялках. Самопрялка – это ручной станок для прядения нити из шерсти, состоящий из двух катушек. В самопрялке для скручивания нити использовался принцип ременной передачи. Раньше большую катушку приходилось раскручивать рукой. К самопрялке добавили педаль. Нажимая ногой на педаль, работник смог раскручивать катушку без использования рук. Этот механизм упростил работу и позволил за то же время производить больше пряжи. В данном устройстве возвратно-поступательное движение педали передавалось через деревянный шатун на кривошип и преобразовывалось во вращательное движение большой катушки (шкива).
Самопрялка с педалью и КШМ позволяла освободить руки и сделать работу более производительной
КШМ в паровых машинах
Начиная с начала XVIII века большую популярность среди изобретателей и ученых начинают получать паровые машины. Первый паровой двигатель для водяного насоса построил в 1705 году английский изобретатель Томас Ньюкомен для выкачивания воды из глубоких шахт.
Позднее устройство парового двигателя было усовершенствовано шотландским инженером и механиком Джеймсом Уаттом (1736-1819). Кстати, именно Джеймс Уатт ввел в оборот термин «лошадиная сила», а его именем назвали единицу мощности Ватт. Паровая машина Уатта получила сложную систему связанных тяг, а планетарная зубчатая передача преобразовывала возвратно-поступательное движение поршня во вращательное движение маховика (большого тяжелого колеса). Данная паровая машина стала универсальной, так как в отличие от машины Ньюкомена поршень имел рабочий ход в обе стороны. Машина Уатта получила широкое распространение на ткацких фабриках, в металлургии, при строительстве первых паровозов для железных дорог XVIII века.
Нужно сказать, что паровыми машинами занимались в те времена очень многие изобретатели. Так, в Российской Империи свою двухцилиндровую паровую машину изобрел инженер Иван Иванович Ползунов (1728-1766).
В XIX веке паровую машину Уатта упростили, заменив сложный планетарный механизм на кривошипно-шатунный механизм.
Паровая машина с кривошипно-шатунным механизмом
Схема паровой машины с кривошипно-шатунным механизмом
Паровая машина с КШМ нашла широкое применение при строительстве первых автомобилей на паровой тяге и паровозов, перевозящих грузы по железной дороге.
КШМ в двигателях внутреннего сгорания
До этого мы рассматривали использование кривошипно-шатунного механизма в паровых двигателях. В паровом двигателе топливо сгорает в печи (вне цилиндра) и нагревает водяной котел, и уже водяной пар в цилиндре толкает поршень.
В двигателе внутреннего сгорания топливная смесь (воздух + газ, или воздух + бензин и т.д.) поджигается внутри цилиндра и продукты горения толкают поршень. Сокращенно такие двигатели называют ДВС.
Первый одноцилиндровый ДВС на газовом топливе построил в 1860 году в Париже французский изобретатель Жан Ленуар.
Двигатель внутреннего сгорания Жана Ленуара (внешне очень похож на паровую машину)
Однако широкое применение двигатели внутреннего сгорания нашли в конце XIX века после получения керосина и бензина из нефти. Появление жидкого топлива позволило создать экономичные двигатели небольшой массы, которые можно было использовать для привода транспортных машин.
В 1881-1885 гг. российский изобретатель Огнеслав Костович сконструировал и построил в России восьмицилиндровый двигатель мощностью 59 кВт.
Двигатель внутреннего сгорания Огнеслава Костовича
В 1897 г. немецким инженером Рудольфом Дизелем был спроектирован и построен первый двигатель с воспламенением от сжатия. Это был компрессорный двигатель, работающий на керосине, впрыскиваемом в цилиндр при помощи сжатого воздуха.
Рудольф Дизель и его двигатель внутреннего сгорания
Все эти ДВС имели схожие черты и использовали кривошипно-шатунный механизм для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала.
Давайте посмотрим на схему устройства современного двигателя внутреннего сгорания.
Поршень совершает возвратно-поступательное движение вдоль цилиндра – он ходит вверх и вниз.
Шатун – деталь, связывающая кривошип и поршень.
Кривошип – условная деталь, которая связывает шатун с коленвалом.
Противовес снижает вибрации при вращении коленвала.
Блок цилиндров – корпус, в котором находятся цилиндры двигателя.
Поршневой палец – цилиндрическая деталь, ось вращения шатуна относительно поршня.
Коленвал (коленчатый вал) – ось вращения ступенчатой формы.
Верхняя мертвая точка – крайнее верхнее положение поршня, где меняется направление его движения.
Нижняя мертвая точка — крайнее нижнее положение поршня, где меняется направление его движения.
Ход поршня — расстояние между крайними положениями поршня. Равно удвоенному радиусу кривошипа.
Видео:
Литература:
Маятник Капицы
Обычный маятник, если перевернуть его кверху ногами, неустойчив. Для него крайне трудно найти верхнюю точку равновесия. Но если совершать быстрые вертикальные возвратно-поступательные колебания, то положение такого маятника становится устойчивым.
Петр Леонидович Капица
Советский академик и нобелевский лауреат по физике Петр Леонидович Капица (1894 — 1984) использовал модель маятника с вибрирующим подвесом для построения новой теории, которая описывала эффекты стабилизации тел или частиц. Работа Капицы по стабилизации маятника была опубликована в 1951 году, а сама модель получила название «маятник Капицы». Более того, было открыто новое направление в физике — вибрационная механика. Данная модель позволила наглядно показать возможности высокочастотной электромагнитной стабилизации пучка заряженных частиц в ускорителях.
Владимир Игоревич Арнольд
Другой советский математик и академик Владимир Игоревич Арнольд (1937-2010), который был заместителем Капицы, вспоминал его слова:
«Он (Капица — примечание) сказал: «Вот смотрите — когда придумывается какая-то физическая теория, то прежде всего надо сделать маленький какой-нибудь прибор, на котором его наглядно можно было-бы продемонстрировать кому угодно. Например, Будкер и Векслер хотят делать ускорители на очень сложной системе. Но я посмотрел, что уравнения, которые говорят об устойчивости этого пучка, означают, что если маятник перевернут кверху ногами, он обычно неустойчив, падает. Но если точка подвеса совершает быстрые вертикальные колебания, то он становится устойчивым. В то время как ускоритель стоит много миллионов, а этот маятник можно очень легко сделать. Я его сделал на базе швейной электрической машинки, он вот здесь стоит». Он нас отвел в соседнюю комнату и показал этот стоящий вертикально маятник на базе швейной машинки».
У математика Арнольда не было своей швейной машинки, и он огорчился. Но у него была электробритва «Нева», из которой и был собран перевернутый маятник. К сожалению, в первой конструкции маятник падал. Тогда Арнольд вывел формулу и увидел, что длина маятника не должна быть больше 12 сантиметров. Известный математик укоротил подвес до 11 сантиметров и все получилось.
Давайте посмотрим, какие силы действуют на «маятник Капицы». После прохождения верхней мертвой точки подвес маятника начинает тянуть грузик вниз. После прохождения нижней мертвой точки подвес толкает грузик вверх. Так как углы вежду векторами сил в верхней и нижней точке разные, то сумма их векторов дает силу, направленную к оси вертикальных колебаний маятника. Если эта сила больше силы тяжести, то верхнее положение маятника становится устойчивым.
А эта формула описывает взаимосвязь частоты вибраций подвеса, амплитуды колебаний и длины жесткого подвеса.
Источник