L200c автоматическое зарядное устройство своими руками

Как сделать зарядное устройство для гелевого аккумулятора своими руками

В продаже можно встретить множество зарядных устройств для аккумуляторных батарей, в том числе и для того, чтобы зарядить гелевый аккумулятор. Однако настоящие любители электроники, для которых самое главное в жизни — это проведение собственных интересных экспериментов, могут смастерить з арядное устройство для гелевого аккумулятора своими руками . Сделать это вполне реально, о чем свидетельствуют многочисленные положительные опыты, которыми пользователи с удовольствием делятся, выкладывая тематические видео в Интернет.

Микросхема L200C

На первый взгляд может показаться, что смастерить самому устройство, которое бы соответствовало «требованиям» капризных гелевых батарей, трудно. Однако благодаря существованию популярных в народе «посылок из Китая» есть прекрасная возможность заказать эту схему на AliExpress, что значительно упростит изготовление и сборку зарядного устройства.

Схема зарядного устройства L200C не только регулирует напряжение , но еще и ограничивает ток в нужном направлении. Это ограничение идеально подходит для того, чтобы правильно зарядить именно гелевый аккумулятор . Ведь такая батарея чувствительна к перезарядам и возможным перепадам напряжения в сети. Микросхема снабжена защитой от короткого замыкания и от перегрева. Кроме этого, она генерирует и малый «ток покоя».

Собираем прибор

Собрать зарядник можно, сделав корпус из прочной фанеры и обработав его шпатлевкой и краской . Перед этим необходимо провести грунтовку , чтобы корпус зарядного устройства был максимально прочным и надежным. Грунтовка должна сохнуть в течение двух часов. Затем следует ошкуривание мелкой наждачкой, шпатлевка и покраска. Для окраски можно использовать красящее средство с распылителем, которое выпускается в специальном металлическом баллончике.

Спереди корпуса устанавливается аналоговый амперметр , а также цифровой вольтметр . Вольтметр рекомендуется устанавливать именно цифровой, потому что на нем будет хорошо видна разница зарядки батареи. Внизу корпуса, слева и справа, можно прикрутить болты под выводы питания . К ним и подводятся провода. Провода закрепляются закручиванием болтов, а потом подсоединяются к аккумулятору. Конец проводки оголяется, из него делается небольшая петелька, которая и цепляется за болтик. Болты закручиваются, плотно фиксируя провода. При желании можно использовать и «крокодилы». Вариант очень компактен и удобен.

Сзади зарядного устройства обязательно понадобится вентилятор . Рекомендуется использовать любой вентилятор с напряжением в 12 вольт, можно приобрести компьютерный. Провод питания тоже выводится сзади, для максимального удобства в использовании.

По обоим бокам корпуса должны быть сделаны специальные отверстия для циркуляции воздуха во время вентиляции и охлаждения. В качестве решетки можно использовать крышку от старого компьютерного корпуса: в ней находятся отверстия, прекрасно подходящие для этого случая. Из крышки вырезается перфорированная сетка ножницами по металлу и приклеивается изнутри к корпусу специальным клеем.

Низ корпуса можно облагородить, прикрутив ножки из той же фанеры с помощью саморезов. Для того чтобы ножки были устойчивыми, а саморезы не выпячивались из фанерной основы, их рекомендуется слегка обработать болгаркой, сровняв с поверхностью ножек. Кроме ножек, внизу для фиксации крышек нужно прикрутить стрип-петлю.

Что находится внутри самодельного ЗУ?

Внутри устройства находятся:

  • Два магнита — один в крышке, а другой в самом корпусе. Сила притяжения этих магнитов друг к другу необходима для того, чтобы крышка надежно фиксировалась при закрывании, не оставляя в устройстве щелей. Петля, о которой уже говорилось раньше, поддерживает крышку снизу при открывании, и она никуда не денется.
  • Пайка схемы может быть проведена навесным монтажом. Все проводки крепятся на кусочки фанеры так, чтобы вся внутренняя начинка устройства могла «выезжать» из корпуса для чистки, либо в целях починки при выходе из строя какого-либо элемента.
  • Четыре выпрямительных диода.
  • Конденсатор (кстати, если где-нибудь у вас есть конденсаторы советского образца, они идеально подойдут для самодельного зарядника).
  • Трансформатор в 25 ватт (можно использовать любой небольшой трансформатор — например, из старого музыкального центра 90-х годов).
  • Саму микросхему можно установить на радиатор, взятый из LT— монитора. Во время работы радиатор разогревает микросхему до 40-45°С. Такой нагрев устройство выдержит, ничего страшного в этом нет.
Читайте также:  Как построить баню по черному своими руками

Суть схемы зарядного устройства

Налаживание самой схемы сводится к установке резисторов. Первым производится настройка тока, показатель которого всегда должен быть 10% от емкости заряжаемого аккумулятора. Вторым настраивается напряжение: показатель его должен соответствовать цифре, указанной на корпусе вашей АКБ. Обычно, это английское обозначение Cycle use 14,5-14,9 V.

Что касается обозначений «плюс» и «минус» на самодельном зарядном устройстве, можно нарисовать значки маркером, либо использовать яркие цветные наклейки. Конечно, если зарядник для гелевых аккумуляторов изготавливается своими руками, автор сам будет знать о том, где у него располагаются «полюса». Но для того, чтобы их случайно не перепутать, лучше обозначить сразу.

При большом желании и наличии под рукой предметов, которые могут пригодиться при сборке, смастерить зарядное устройство для гелевых аккумуляторов своими руками вполне возможно, а для того, чтобы собрать все правильно, воспользуйтесь схемой L200C.

Источник

Самодельное зарядное устройство для гелевых аккумуляторов

Досталась мне микросхема L200C и вспомнил как собирал свое первое зарядное устройство для гелевых герметичных аккумуляторов. Схватила настольгия, и решил повторить свою работу
Схема вообще поражает своей простотой и надежностью. Для опытов с проверкой буду использовать тот же АКБ что и раньше, который к слову живет у меня уже лет 6-7. Проработал 3 года у меня в UPS и высох, я восстановил АКБ и остальное время опыты проводил питая автомобильные усилители

Пару слов о АКБ. АКБ выдает 12В 2,16А, масса где-то 3кг. Разница их от автомобильных аккумуляторов в том, что они наполнены гелем и им нельзя закипеть, поэтому для них нужна спец зарядка. Вот такие дела. Ну приступим

Схема зарядного устройство для герметичных гелиевых АКБ

Питается схема от 5 до 40В, но лучше не превышать 30В
Выдает до 32В стабилизированного напряжения
Ток заряда до 2А, но лучше не превышать 1.5А
Перечень компонентов

C1 = 100n любой (керамика, пленка)
C2 = 3300мФ Напряжение берем выше, чем питание
C3 = до 1мФ любой (керамика, пленка)
R1 820 Ом
VD1 зависит от тока заряда, но можно поставить любой. При, например, заряде в 0,5А, диод ставим на 1А

Печатная плата зарядного устройства гелевых аккумуляторов:

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Что бы задать нужное напряжение заряда, надо определить Rv. Определяется он по формуле, исходя из закона Ома, Rv=Uo*R1/(2.77-R1), где Uo – напряжение зарядки. R1 — со схемы. В данном случае 820Ом, 2.77 – это опорное напряжение 4 ноги микры. Для примера что бы напряжение зарядки было 14.4В, это стандартное напряжение для зарядки 12В АКБ, рассчитываем Rv=14.4*0.82/(2.77-0.82)=6.05К, лучше взять резистор на 5.7к+0.47к подстроечный, что бы выставить точное напряжение

Что бы задать максимальный ток зарядки, надо рассчитать резистор Ri на падение напряжения между ножками 5 и 2 на напряжение 0,45В, рассчитываем Ri по формуле Ri=0.45/I, где I — это ток заряда. К примеру ток 0.5 ампер будет при Ri=0.45/0.5=0.9Ом. Мощность резистора P=I^2*Ri. При токе заряда 0.5А мощность резистора равна P=0.22Вт, но лучше взять 0,5Вт

Так же при универсализации зарядки на несколько напряжения, лучше что бы разница напряжений между ногами 1 и 2, была как можно меньше, вы так сэкономите на радиаторах для микросхемы. Если планируете использовать зарядку на 6В и 12В, то лучше взять трансформатор с напряжением 15В с отводом от средней точки на которой 7,5В под нагрузкой. И при переключении с 12В на 6В зарядку обмотки переключаете с 15В на7,5В.

Кстати о трансформаторе. Его мощность зависит от напряжения заряда и тока заряда. Если Вы планируете заряжать 1.5А током при напряжении 14,4В, при обмотке вторички 15В под нагрузкой, то мощность транса нужна от 40Вт 15В 2.5А, при этом зарядка берет 22Вт, а остальные рассеивается в тепло на радиатор.

Читайте также:  Идеи для развивающей книжки своими рук

Напряжение на трансформаторе можно и больше взять, но до 30В. Но при этом и радиатор хороший. При этом помните, что после моста и фильтра C2 напряжение поднимется в 1,4 раза больше, поэтому транс можно взять с напряжением до 21В вторичной

Ну, на этом я с вами прощаюсь. Удачной сборки и удачи в наладке.

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Admin-чек

2 комментариев для “Самодельное зарядное устройство для гелевых аккумуляторов”

Здравствуйте, у меня есть несколько вопросов:
1.допустим, что, выходное напряжение 12.8 вольт (холостой ход, без нагрузки),
при достижении какого напряжения начнётся ограничение тока?
2.ограничивает-ли ток, эта микросхема, при подключении разряженного аккумулятора?
3.регулируются ли эти пороги ограничений тока?
нужно для зарядки 3-х параллельно соединённых 18650.

Добрый день. Для зарядки трех LI-ion выходное напряжение 12,6В. Первостепенно при разряженном акб идет стабилизация тока, а по мере зарядки схема работает в режиме стабилизации напряжения.

В статье же четко написано как изменить ток зарядки

Что бы задать максимальный ток зарядки, надо рассчитать резистор Ri на падение напряжения между ножками 5 и 2 на напряжение 0,45В, рассчитываем Ri по формуле Ri=0.45/I, где I — это ток заряда. К примеру ток 0.5 ампер будет при Ri=0.45/0.5=0.9Ом. Мощность резистора P=I^2*Ri. При токе заряда 0.5А мощность резистора равна P=0.22Вт, но лучше взять 0,5Вт.

Источник

Зарядное для авто со стабилизацией тока на L200

Зарядное для авто со стабилизацией тока на L200, с амперметром и вольтметром

Зарядное устройство, схема которого показана на рисунке 1, предназначено для зарядки автомобильных двенадцати вольтовых аккумуляторов емкостью до 75 ампер-часов.

Основой данного зарядного устройства является микросхема L200, обеспечивающая стабилизацию, как выходного напряжения, так и тока заряда.

L200 Datasheet PDF

Мощность, на которую рассчитана данная микросхема в документации, я не нашел. Но ее можно косвенно определить по представленному графику «Безопасная рабочая зона»

По графику можно определить, например, что при температуре +125⁰С, при токе нагрузки, на который рассчитана данная микросхема — 2А и падении напряжения на ней, равному 18 вольт, микросхема может обеспечить без разрушения мощность, равную 36 Вт. Вообще данная микросхема имеет внутреннюю функцию ограничения максимальной мощности, что очень хорошо.

Для обеспечения большого зарядного тока в схему введен дополнительный мощный составной транзистор КТ825. При соответствующем размере радиатора данный транзистор может обеспечить зарядный ток в 12,5А, который соответствует току заряда аккумулятора емкость 125 ампер-часов. Прикинуть необходимую площадь теплоотвода можно по монограмме из статьи «Расчет радиаторов» . Данный транзистор можно заменить импортным составным p-n-p транзистором, например, серии TIP145, но у этого транзистора максимальный ток коллектора – 10А.

Читайте также:  Как сделать прозрачный кулон своими руками

TIP145 Datasheet PDF

В качестве измерительного устройства в схеме применен цифровой вольтамперметр китайского производства из магазина aliexpress.ru. Внешний вид его показан выше на фото1.

Работа схемы

При подаче напряжения питания на вход схемы на выходе микросхемы DA1 L200 выводе 5 появляется стабилизированное напряжение. Величина выходного напряжения стабилизатора зависит от соотношения величин резисторов выходного делителя R4 и R5 и вычисляется по формуле 1:

Из формулы видно, что чем больше величина резистора R4, тем больше выходное напряжение. Исходя из этой формулы, при необходимости, можно вычислить и номиналы резисторов R4,R5. Формулы: два и три соответственно.


Оперируя этими формулами можно применить и другие номиналы резисторов данного делителя, имеющиеся у вас в наличии. В разумных пределах конечно. Минимально-возможное выходное напряжение схемы равно 2,77 вольта. Это напряжение внутреннего ИОНа стабилизатора напряжения.

При подключении нагрузки к выходу схемы начинает протекать ток по цепи :Входная клемма — плюс выпрямителя (на схеме не показан) –> резистор R1 –> вход, вывод 1 микросхемы DA1 -> выход DA1, вывод 5 –> резистор R2 –> диод Д1 –> верхний конец нагрузки –> нижний – общий провод –> минус выпрямителя. При прохождении тока через резистор R1, на нем будет образовываться напряжение. При малом токе этого напряжения будет недостаточно для открытия мощного транзистора VT1 и ток нагрузки будет протекать непосредственно через внутренний управляющий резистор микросхемы. При увеличении тока нагрузки, начнет увеличиваться и напряжение между эмиттером и базой VT1, стоящего параллельно микросхеме. Как только оно превысит уровень в 0,7 вольт, он начнет открываться. Таким образом, при больших значениях тока нагрузки основной ток будет течь именно через VT1.

Микросхема DA1 L200 имеет вывод 2 – вывод лимитирования тока. Величина напряжения между выводами 5 и 2, при которой начинается ограничение тока нагрузки у данной микросхемы равно 0,45В. Исходя из этого, при величине резистора R2 (датчике тока) равной 0,036 Ом максимальный ток ограничения данной схемы будет равен:


= 0,45/0,036 = 12,5А. Это для случая, если вы будете заряжать 125 аккумуляторы. Транзистор КТ825 такой ток выдержит, с соответствующим теплоотводом, а вот диод VD1, надо заменить на более мощный или поставить два диода в параллель. Диод или диоды так же необходимо снабдить соответствующими теплоотводами. От величины резистора R2 зависит величина максимального тока ограничения.

Но здесь есть большое НО! Заявленные разработчиком пределы отклонения напряжения ИОН (0,38В… 0,52В)для компаратора тока для китайских производителей, ни чего не значат. При испытаниях данной схемы, у конкретного экземпляра L200, опорное напряжение было равно 0,714В. Значит, в формулу 4 надо вместо 0,45 подставлять значение напряжения ИОН конкретно применяемой микросхемы. Замерить его можно собрав схему и загнав ее в режим стабилизации, измерить напряжение между выводами 2 и 5 L200. Для тока 12,5А при напряжении U2-5, равному 0,714В величина резистора R2 – 0,714/R2 = 0,05712 Ом. При этом возрастет мощность потерь. P = I² • R2 = 8,925 Вт. Имейте это ввиду.

Для плавной регулировки тока ограничения в сторону уменьшения в схему введен диод Д1 и переменный резистор R3. Благодаря определенной форме своей ВАХ, диод в данной схеме работает, как низковольтный стабилизатор напряжения. Величина падения напряжения на диоде мало зависит от величины проходящего через него тока. Параллельно ему стоит резистор R3, с которого необходимая часть напряжения, падающая на диоде, плюсуется к паданию напряжения на датчике тока, резисторе R2, и подается на вывод 2 DA1. Минимальный ток стабилизации зависит от прямого падения напряжения на конкретном диоде. Например, для диода Д214А это напряжение примерно равно одному вольту, а Д214 – 1,2 вольта.

Данным устройством можно заряжать не только автомобильные аккумуляторы, но и щелочные. Заряжать можно двумя способами. Зарядка определенным стабильным током за определенное время. Зарядка с ограничением первоначального тока заряда до нужного напряжения.

Я специально не стал приводить схему выпрямителя, все зависит от вашего выбора, что вы будете заряжать. Например, для зарядки аккумуляторов емкостью 55 ампер-часов с током заряда 5,5 ампера прекрасно подходит унифицированный трансформатор ТН60.

Источник

Оцените статью