Led модули своими руками

Как сделать самодельный светодиодный экран?

Светодиодные экраны или, как их еще часто называют, ЛЕД-дисплеи, стали доступны для массового применения сравнительно недавно. Более правильным будет вместо русской аббревиатуры именовать это электронное устройство LED-дисплеем (light emitting diode). Наряду с этими названиями часто используется термин «светодиодный экран».

Первые видеоэкраны появились более 20 лет назад, но их яркость (отдельные пиксели были на газоразрядных лампах) была недостаточной для воспроизведения качественного изображения, особенно в солнечные дни. Кроме этого техническое обслуживание этих устройств было очень сложным и дорогим.

Стремительный прогресс в технологии производства ярких, качественных и в то же время недорогих светодиодов основных цветов (красного, зеленого и голубого) позволил совершить стремительный шаг вперед индустрии производства светодиодных экранов. Огромный спектр возможностей по созданию видеоизображений, управлению цветовыми, яркостными и динамическими изображениями произвел настоящую революцию на рынке наружной и интерьерной рекламы (экраны небольшого размера – от 1,0 х 1,0 м, где требуется демонстрация изображений большого масштаба).

В крупных российских городах, захламленных повсеместно за последние 20 лет безликими билбордами 3 х 6 м, началось постепенное внедрение этой современной технологии. Модульные принципы сборки и аппаратно-программное обеспечение Arduino позволяют собрать LED-экран своими руками.

Модули для сборки

Экран нужных габаритов собирается из готовых электронных блоков (модулей) стандартных размеров, укомплектованных пикселями из светодиодов или сборок RGB, соединенными на общей плате и имеющими необходимые разъемы и шлейфы для объединения с соседними блоками. Модули, как правило, китайского производства, имеющие более низкую цену, приобретаются в специализированных фирмах и магазинах. Набором типичных параметров обладают модули Р10:

  • размер, мм – 320 х 160 х 20;
  • вес модуля, г – 600–700;
  • шаг пикселя, мм – 10;
  • разрешение (количество пикселей на 1 м 2 ) – не менее 256 х 192;
  • яркость светодиодного экрана, кд/м 2 – 6 000–7 000;
  • угол половинной яркости, градус – 120;
  • срок службы, час – до 50 000;
  • максимальная потребляемая мощность (для уличных экранов), Вт/м 2 – 500;
  • расстояние комфортной видимости изображений, м – от 7;
  • все световые и электронные компоненты защищены от воздействия влаги, пыли, механических воздействий.

Модули Р10 разных цветов

При отсутствии модулей можно собрать светодиодный экран на базе светодиодной ленты. Но этот вариант более трудоемок в сборке и не обладает необходимой надежностью при наборе жестких условий уличной эксплуатации: большой диапазон температур, влажность, УФ-воздействие, пыль, грязь и т. п.

Как собирается LED-дисплей

На первом этапе изготовления самодельного видео экрана необходимо изготовить надежную несущую металлоконструкцию для размещения на ней большого количества электронных блоков (модулей, контроллеров, источников питания – драйверов, преобразующих сетевое переменное напряжение 220 В в постоянное – 12 В). Конструкция представляет собой каркас из квадратной профильной трубы. Типичный вариант каркаса представлен ниже на фото.

Каркас LED-экрана с модулями Р10

На втором этапе собирают модули Р10, крепят к каркасу вплотную друг к другу и соединяют с помощью шлейфов, имеющих качественные разъемы «папа-мама». Крепеж модулей зачастую осуществляется с помощью надежных магнитов, что очень упрощает стадию сборки и особенно разборки при производстве ремонтных работ.

Далее с обратной стороны каркаса размещаются блоки питания и контроллеры, отвечающие за обработку видеоинформации и распределение ее на конкретные модули и малые пиксели. Задняя стенка видеоэкрана изготавливается из металлического листа или алюминиевой композитной панели. Как сделать монтаж LED-экрана, показано ниже.

Схема светодиодного экрана

Как управлять работой LED-дисплея

Понятно, что сегодня собрать светодиодный экран своими руками может практически любой человек, владеющий элементарными знаниями электротехники и навыками обращения с инструментами типа отверток и шуруповерта. Однако для того, чтобы «вдохнуть жизнь» в собранное железо, надо понимать, каким образом видеофайлы поступают на светодиоды и как создается программа для работы видеоэкрана.

Управление и замена файлов с видеороликами производится через USB-порт (через flash-карту) или с помощью Wi-Fi-роутера через интернет-соединение. Видеоролик, созданный предварительно с помощью специализированного программного обеспечения, переводится в формат * .avi или * .mpeg. Затем он преобразуется микроконтроллером или компьютером в цифровой поток, поступающий на микросхемы драйверов постоянного тока, подающих напряжение в соответствии с алгоритмом, заложенным в программу, на светодиоды дисплея.

Качество сделанного экрана определяется возможностями системы управления LED-экрана, которая может быть синхронной или асинхронной. На рисунке ниже представлена схема управления LED-экраном.

Схема управления светодиодным LED-экраном

Синхронная система управления подразумевает, что на экране отображается та же информация, что и на компьютере, то есть идет прямой эфир. Например, можно транслировать изображение с телекамеры, установленной на стадионе или концерте. Такая система состоит из карты-передатчика и нескольких карт-приемников. В компьютере, который управляет экраном, находится карта-передатчик, а на экране – карты-приемники, соединенные UTP-кабелем (витая пара).

Читайте также:  Декоративный шоколад своими руками

Асинхронный способ вывода информации на экран подразумевает предварительную загрузку в память микроконтроллера. Для этого используют flash-карту или кабель. Асинхронная система требует присутствия нескольких микроконтроллеров, количество которых зависит от геометрических размеров LED-дисплея. Эта система позволяет осуществлять работу самостоятельно по заданной программе без внешнего компьютера.

Аппаратная платформа Arduino

Для создания программы управления светодиодными видеоустройствами (экраны, бегущие строки) на рынке существует большой выбор различных продуктов. Одним из самых популярных является аппаратно-вычислительная платформа Arduino (Ардуино), в состав которой входят плата ввода-вывода и средства разработки.

Arduino используется как для разработки автономных интерактивных объектов, так и для подключения к программным продуктам, выполняемым на компьютере. Платы имеют аналоговые и цифровые порты, к которым могут подключаться разные устройства автоматики: датчики (температуры, влажности, давления и т. п.), кнопки, моторы, двигатели, видеоэкраны, бегущие строки.

Можно сказать, что Arduino – это инструмент проектирования различных электронных устройств. Программная платформа сделана с открытым программным кодом на базе языка программирования С/С ++ . Проекты, реализованные с помощью Arduino, могут функционировать как самостоятельно, так и взаимодействовать с компьютерным программным обеспечением (MaxMSP, Flash, Processing).

Плата программируемого контроллера Arduino

Источник

Сборка линейного светодиодного светильника

Сейчас одним из самых популярных и модных решений освещения являются линейные светодиодные светильники. В этой статье мы разберемся, как устроены современные LED системы освещения и соберем один светильник своими руками.

Конструкция

Линейный светильник включает в себя: алюминиевый светодиодный профиль с поликарбонатным светорассеивающим стеклом, источник света (светодиодная лента или светодиодная линейка), LED драйвер. Так же к профилям предлагается огромное множество комплектующих (подвесы, заглушки, крепления и многое др.)

Из плюсов такой простой конструкции можно отметить широкие возможности конфигурации и выбора. Практически каждый такой светильник является уникальным. Неоспоримое преимущество линейных систем освещения заключается в том, что мы можем делать светильники любой длины.

Разновидности

Линейные светильники бывают: встраиваемые, подвесные, накладные. Отличаются они по способу монтажа, который предусмотрен производителем.

Приступим

Выбор корпуса

Мы приняли решение собрать подвесной светильник, который найдет свое применение как в гараже, так и в офисе. Среди широкого ассортимента алюминиевых светодиодных профилей мы нашли подходящий. Наш выбор остановился на профиле который называется U-S35. Габариты этого профиля 35*35*2500мм.

Выбор источника света

Изучив рынок светодиодных лент, посмотрев обзоры и прочитав отзывы, мы захотели применить в нашем будущем светильнике новинку.

Японский светодиодный модуль HOKASU. Модуль обладает огромным преимуществом перед светодиодной лентой.

Злейший враг светодиодов это тепло. От температуры, которую выделяют мощные LED’ы, светодиоды деградируют, теряют проценты своей первоначальной яркости. Очень важен мгновенный отвод точечного тепла, которое концентрируется у самого основания кристалла. Так как, светодиодная лента — это гибкий проводник с smd- светодиодами, при монтаже их на охлаждающую поверхность у нас получается тепловой зазор. Лента не очень плотно клеится к поверхности, мгновенному отводу тепла мешает клей (двойной скотч 3M). Линейки лишены этого недостатка, т.к плата на заводе припаяна к алюминиевой полосе, которая в свою очередь уже крепится к поверхности.

Итак, характеристики в студию:

  • Напряжение питания, V: 24
  • Световой поток, lm / m: 2700
  • Мощность, Вт / м: 26
  • Размер светодиодов: 2835 (2.8×3.5мм)
  • Цветовая температура, K: 4000

Комплектация

Из материалов мы использовали

  • Алюминиевый профиль
  • Заглушки + подвесы + крепления для накладного монтажа
  • Светодиодный модули
  • Источник питания 24v 150w

Для сборки нам понадобится

  • Паяльник
  • Мультиметр
  • Щипцы для резки и зачистки проводов
  • Флюс, олово
  • Прямые руки

Сборка

Для начала мы примерим линейки в профиле и обрежем их до нужного нам размера.
Кстати, их можно резать каждые 4 см.

После того как мы обрезали линейку, желательно проверить её на сопротивление, т.к после первой попытки, когда я резал обычной пилой, линейка замыкала с самого края.

Это связано с тем, что основание изготовлено из алюминия и проводит ток. И при неаккуратном разрезе с торца медные дорожки задевают подложку.

Далее мы проклеиваем линейки (у них предусмотрен клейкий слой 3M):

Сейчас наш светильник практически готов, нам осталось запаять все линейки между собой. Как заявляет производитель: допустимо последовательное соединение до 3м. (Это мы проверим позже, замерив общую мощность готового линейного светильника.)

Припаиваем с одного конца провод и закрываем экран. (Для провода нужно сделать отверстие и вывести его за профиль, но мы пока делать этого не будем.)

Я подключил светильник к лабораторному источнику питания для того, чтобы посмотреть какой ток потребляют светодиоды. Довольно распространенная проблема, что при подключении мощных лент более 2м идет потеря мощности. Это связано с недостаточной проводимостью медных дорожек. У меня получилось, что суммарная мощность светильника 2.7*24 = 64.8Вт (26 Вт/м).

Читайте также:  Багажник для ваз 2121 своими руками

Показатели скакали от температуры, но усреднено 26 Вт/м. С учетом того, что заявленная мощность одного модуля 26Вт, я считаю это идеальный показатель.

Применимость

Для наглядности я повесил светильник над рабочим столом и сделал несколько фотографий. В будущем найду ему постоянное место.

Стоимость

Линейный светильник 65Вт, 2.5м.

  • Профиль U-S35: 2400р
  • Модули HOKASU: 2370
  • Комплектующие:

300р

  • Источник питания: 1150р
  • Итого: 6220р.

    Одного такого светильника хватит на 2 или даже на 3 рабочих места. Его можно разрезать пополам и установить над разными столами, подключив к одному источнику питания.

    Источник

    Проект за пару дней: большой дисплей из светодиодных лент

    Полгода назад мы дополнили наш почти традиционный офисный каток 7,6 тыс. светодиодами, чтобы транслировать изображения и видео прямо на поверхность льда. На гиктаймсе был опубликован пост, в котором рассказывалось о том, что подо льдом скрывается самый настоящий гигантский дисплей разрешением 120х63 «пикселей», на который можно выводить достаточно сложные и яркие изображения.

    Часто нам задавали вопрос: можно ли своими руками сделать нечто подобное дома? Можно, почему нет? Про лед был подробный рассказ (вот история о первом катке — захватывающее чтиво в июльскую жару), а вот о способах превращения светодиодов в большой дисплей практически не упоминали. Так как наши мейкеры люди занятые и предпочитают говорить о чем-то новом, а не пережевывать прошлое, публикация этой статьи откладывалась снова и снова. В конечном счете мы решили перевести для вас понятный и наглядный туториал, после которого можно будет взять и повесить дисплей себе на стену.

    Итак, выдохните, все будет просто. Бóльшая часть времени уйдет на сборку — придется немного покорпеть над соединением лент друг с другом. Они должны быть спаяны в последовательную цепь на задней стороне панели. Для рассеивания света защитное стекло будет матированным.

    Главный вопрос проекта — какое ПО использовать? Здесь все зависит от ваших потребностей: мы начнем с демокода и указателей, а в одной из следующих статей рассмотрим, как выводить на дисплей уведомления и котировки акций.

    Что нам понадобится

    • 10 м светодиодной ленты (продается в катушках по 5 м). Я использовал дешевый вариант — WS2812B. Если же вам хочется получить более высокое разрешение дисплея, можете приобрести ленту с плотностью 60 светодиодов/метр;
    • блок питания на 5 В и 10 А. Я использовал модель, у которой входное питание до 240 В подается на винтовые зажимы. Если вам нужно сделать дисплей более безопасным, выберите полностью закрытый блок питания;
    • Arduino UNO;
    • большое количество отрезков толстого провода. Я отрезал пучок от старого компьютерного блока питания;
    • фоторамка 50х50 см;
    • матирующий спрей и белая краска.

    Общие затраты у меня получились меньше $100.

    Также вам понадобятся инструменты:

    • паяльник с припоем;
    • клеевой пистолет;
    • нож или ножницы;
    • инструмент для снятия изоляции.

    Сначала прочитайте пособие по работе с электроникой для начинающих!

    Расчеты

    Если вы приобрели рамку 50х50 см и такие же светодиодные ленты, как у меня, то сможете уместить в дисплей 15 отрезков по 15 светодиодов. Но ничто не мешает использовать рамку другого размера. Расстояние между светодиодами — около 30 мм, таким образом на один пиксель приходится примерно 30 мм 2 . Это наш 1DPI. Ну да, разрешение не как у Retina.

    Рассчитайте, сколько отрезков ленты вам понадобится, и расчертите направляющие с обратной стороны панели. Семь раз проверьте, один раз отрежьте: у меня ленты немного различаются, потому что когда я начал их приклеивать, то обнаружил, что могу вместить только 14 отрезков по 15 светодиодов. Но это не страшно — в приложении можно легко настроить разное количество рядов пикселей и их длину. Отрежьте куски, подходящие для вашей рамки. К сожалению, я обнаружил, что у меня 15-е светодиоды в отрезках приходятся как раз на то место, где нужно припаивать соединительные провода. Поэтому пришлось их выпаивать.

    Матирование стекла

    Для лучшего рассеивания света я решил нанести на обе стороны стекла матирующий спрей. Делать это лучше на улице или на балконе, так как спрей вреден для здоровья. Наносить его необходимо как можно более равномерно. После высыхания матирование получается очень устойчивым, но изначально необходимо добиться равномерного покрытия без каких-либо царапин.

    Также задуйте белой краской панель, которая будет видна сквозь стекло. Отрежьте один из углов — здесь пройдут провода.

    Крепление светодиодных лент

    Для приклеивания лент к панели используйте суперклей. Я пробовал двусторонний скотч, но через несколько недель он отвалился. Клеевой пистолет еще хуже, ведь обе поверхности — панель и обратная сторона ленты — гладкие и не имеют пор. Если вы приобрели светодиодные ленты в резиновом корпусе, то не сильно переживайте относительно точности размещения — их можно свободно двигать.

    Помните, что сигнал будет проходить через всю цепь, и у каждой ленты есть направление передачи сигнала. Ленты нужно размещать так: у одной стрелка (направление сигнала) указывает направо, у следующей — налево, потом опять направо и т.д. То есть сигнал по дисплею будет идти «змейкой». Проверьте еще раз правильность размещения лент, прежде чем клеить их!

    Пайка

    Для соединения лент требуется по три провода разной длины. Внутреннюю пару контактов соединяем самым коротким проводом (на фото — красный), для средней пары берем провод подлиннее, а к внешним контактам припаиваем самый длинный. В зависимости от того, какие ленты в данный момент соединяются, внутренние контакты будут либо питанием (+5V), либо заземлением (GND).

    Прежде чем припаивать провода, залудите их и сами контакты на лентах. На это уйдет больше всего времени, но это крайне важный момент. Не торопитесь, дважды проверьте правильность соединяемых контактов!

    Фиксация лент

    После возни с подключением проводов вы можете обнаружить, что первая лента сдвинулась. Эту проблему я решил следующим образом: просверлил два маленьких отверстия и зафиксировал ленту стяжкой. Если у вас не было под рукой достаточно сильного клея, то таким образом можно дополнительно зафиксировать все ленты с обоих концов.

    Проверка подключения

    Шестой пин Arduino используется для передачи управляющего сигнала; напряжение питания должно подаваться напрямую от блока питания. Подключите заземление между лентами, Arduino и блоком питания. Не пытайтесь запитать ленты от Arduino, а также не подключайте блок питания к Arduino при подключенном USB (когда будет загружаться код для тестирования).

    Скачайте и добавьте в соответствующую папку библиотеку AdafruitNeoPixel, затем запустите Arduino. Протестируйте подключение с помощью следующего кода, указав в первом параметре количество светодиодов (в нашем примере — 60):

    Adafruit_NeoPixel strip =Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

    Если анимация остановится на каком-то ряду, сразу отключите всю конструкцию и проверьте подключение. Возможные причины сбоя:

    • неправильное направление ленты;
    • вы спутали контакты при соединении лент;
    • вы припаяли +5V к GND.

    Помещаем в рамку

    Поскольку рамка не была рассчитана на такую глубину размещения панели, мне пришлось сначала зафиксировать стекло клеевым пистолетом, а затем по периметру вставить резиновый уплотнитель, работающий буфером между стеклом и панелью со светодиодами. После завершающего тестирования помещаем панель в рамку и фиксируем ее клеевым пистолетом. В углу можно проделать небольшое отверстие для вывода проводов. Все, техническая сторона проекта завершена.

    Можете еще подумать над тем, возможно ли спрятать в рамке еще и блок питания с Arduino. А пока переходим к настройке ПО.

    Glediator

    Программа Glediator компании SolderLab.de очень хорошо подходит для анимирования светодиодных матриц на вечеринках или в ночных клубах. Она способна управлять матрицей, состоящей из 512 светодиодов WS2812/NeoPixels, формируя до 24 кадров/сек — этого вполне достаточно для нашего дисплея, можно даже выводить на него простенькие анимационные гифы. Микшер позволит делать плавные переходы между анимациями.

    Для работы с Glediator установите на Arduino UNO прошивку, и проверьте, чтобы сигнальный кабель был подключен к пину 6. Не забудьте прописать в переменной количество используемых вами светодиодов.

    Запустите Glediator, откройте свойства и измените размер матрицы и режим вывода. Настройте порядок пикселей, если у вас используется другая схема, но по этому шагу мало документации, поэтому придется действовать методом проб и ошибок. Если изображение на дисплее отличается от задуманного, попробуйте поиграть с настройками. У меня работал порядок пикселей HS_BL — подозреваю, что это означает «horizontalsnake, startingbottomleft» (горизонтальная змейка, начало слева внизу).

    Glediator — профессиональное приложение, не будем пока изучать его интерфейс и возможности. Загрузите в левое и правое окна разные анимации, затем двигайте микшер между ними. Или используйте готовый плейлист, который показан в видеоролике.

    Библиотеки Adafruit NeoMatrix и Adafruit GFX

    Компания Adafruit создала очень полезную библиотеку для работы со светодиодными матрицами. Сначала она называлась Adafruit GFX, и изначально предназначалась для TFT- и LCD-дисплеев. Затем появилась модификация NeoMatrix, позволяющая полноценно работать с матрицами NeoPixel. Она имеет огромное количество простых в использовании функций по выводу текста или растровой спрайтовой графики.

    Если вы в точности повторили мой проект, то можете воспользоваться этим кодом. Самая важная часть:

    С первыми строками все понятно. В последних трех описывается схема матрицы: в данном случае первый пиксель находится слева внизу (bottomleft), пиксели расположены рядами (rows), соединенными зигзагообразно (zigzag). Если вы сделали иначе, то обратитесь к документации библиотеки.

    Я задал в коде несколько спрайтов — смайлы. Вы можете создать собственные с помощью Java-приложения Img2Code, лежащего в папке библиотеки GFX.

    В будущем мы рассмотрим использование библиотеки для вывода полезной информации вроде котировок акций или ленты Twitter, а пока предлагаю вам самостоятельно поиграть с кодом и загрузить собственные изображения.

    На этом все. Вы создали большой дисплей из светодиодных лент. Теперь нужно придумать, как его использовать. Из оставшихся светодиодов можете создать лампу в виде облачка.

    Источник

    Читайте также:  Водосток docke монтаж своими руками
    Оцените статью