Li ion аккумулятор зарядное устройство своими руками

Зарядное устройство литиевых аккумуляторов своими руками

Проблема автономного питания электронной аппаратуры встала перед человечеством особенно остро при появлении обилия полупроводниковых элементов. Вместе с развитием электроники появлялись новые виды батареек и аккумуляторов, всё это привело к тому, что сейчас ёмкие литий-ионные аккумуляторы стали использоваться практически повсеместно в портативной электронике. Они обладают по-истине впечатляющими ёмкостями при небольших габаритах, могут выдавать большие токи в нагрузку, а потому находят применение практически везде — хоть в небольших беспроводных наушниках, хоть в автомобильной бортовой сети, где требуются высокие токи и большая ёмкость. К особенностям литий-ионных аккумуляторов также можно отнести их «привередливость» к зарядке — просто так взять и подключить такой аккумулятор к источнику питания, чтобы он сам заряжался не получится. Ток заряда должен быть строго нормирован, а его превышение может грозить аккумулятору выходом из строя. Ток заряда обычного литий-ионного аккумулятора должен быть равен примерно одной-двумя десятым от его ёмкости. Например, аккумулятор ёмкость 1000 мА/ч должен заряжаться током 100-200 мА, это обеспечит наиболее долгий срок его службы. Для того, чтобы контролировать ток заряда, нужна специальная схема, которая будет подключаться входом к источнику питания, а выходом — к заряжаемому аккумулятору. Такую схему достаточно просто собрать самому, он представлена ниже.

В левой части схемы на транзисторе Q1 организован индикатор, который сообщает, зарядился аккумулятор, или ещё нет. Последовательно с питанием схемы стоит резистор R1, через который протекает ток заряда аккумулятора, соответственно, на резисторе падает часть напряжения. Если ток заряда ещё достаточно большой, аккумулятор заряжается, падение напряжение на этом резисторе приоткрывает транзистор Q1, светодиод D1 светится. Как только аккумулятор зарядится до нужного напряжение, ток упадёт до минимальных значений, транзистор Q1 закроется и D1 перестанет светится — зарядка завершена. Время заряда будет напрямую зависеть от тока заряда, например, аккумулятор ёмкостью 1000 мА/ч будет заряжаться током 100 мА около 10 часов, а вот током 200 мА уже 5 часов — в два раза меньше при соответствующем увеличении тока заряда в два раза. Конденсатор С1 на схеме — сглаживающий по питанию, сюда не лишним будет установить параллельно электролитический на 47-100 мкФ и параллельно ему керамический на 100 нФ. После этого питающее напряжение поступает на микросхему-стабилизатор LM317, в цепи регулировки которой стоит уже другая микросхема — TL431. Обе эти микросхемы являются распространёнными, достать их можно в любом магазине радиодеталей, а TL431 встречается даже во многих импульсных сетевых блоках питания. Принцип работы данной хитрой схемы достаточно прост. Сперва аккумулятор заряжается постоянным током, около 100 мА, этот ток задаётся резистором R5 — микросхема TL317 работает в роли стабилизатора тока. Затем, когда аккумулятор уже почти зарядится и его напряжение станет близким к 4,2В, схема начинает работать в роли стабилизатора напряжения, дозаряжая аккумулятор небольшим током. Такой алгоритм заряда наиболее правильный и позволит сохранить ёмкость аккумулятора на долгие года, даже при частых циклах зарядка-разрядка. На схеме также виден подстроечный резистор RV1, который служит для настройки выходного напряжения. После сборки схемы его нужно будет настроить всего один раз, для выставления на выходе схемы напряжения 4,2В без подключенного аккумулятора. Можно установить выходное напряжение на уровне 4,1В, в этом случае схема зарядки будет слегка недозаряжать аккумуляторы, при этом 0,1 вольта не сильно скажется на ёмкости аккумулятора, но позволит значительно продлить ему жизнь. Рассмотрим более подробно, какие компоненты нужно применит для сборки данной схемы.

Микросхемы LM317 и TL431. Первая обязательно должна быть в корпусе ТО-220, так как в процессе работы зарядного устройства она будет значительно нагреваться. На её нагрев, в значительно степени будет влиять ток заряда и напряжение, поступающее на вход схемы. Чем больше напряжение на входе, и чем больше ток — те сильнее будет нагреваться микросхема. Её необходимо установить на радиатор с применением теплопроводной пасты, температура радиаторе при долговременной работе не должна превышать 50-60°C, это хорошо скажется на надёжности зарядного устройства. TL431 можно взять в обычном миниатюрном корпуса ТО-92, она нагреваться не будет. Цоколёвки и вид корпусов микросхем представлен на картинке выше.

Светодиоды — здесь всё просто. Можно применить любые светодиоды на 3В, какой угодно формы и цвета. Наиболее логично будет установить D1 красного цвета, а D2 — зелёного, горение зелёного светодиода будет означать, что схема работает и на её выходе присутствует напряжение. Яркость горения светодиодов задаётся резисторами на схеме, включенными последовательно со светодиодами. Все светодиоды имеют два вывода — анод и катод, соответственно это плюс и минус. Как правило, длинная ножка светодиода — плюс, а короткая — минус, важно не перепутать цоколёвку, иначе светодиоды на будут светится.

Читайте также:  Как сделать трафареты своими руками для дома

Несколько слов про резисторы. Они все могут иметь мощность 0,25Вт, кроме двух R1 и R4, эти резисторы будут стоять в цепи питания, а потому через них будет протекать ток заряда, соответственно, будет рассеиваться мощность. Для них нужно взять резисторы мощностью 1-2Вт, этого будет достаточно для рассеивания лишнего тепла. Важно соблюдать номиналы всех резисторов, от них будут зависеть параметры работы схемы.

Ещё один важный элемент схемы — подстроечный резистор RV1, с помощью которого устанавливается напряжение на выходе. Здесь нужно применить многооборотный резистор, например такой, какой показан на картинке выше — его легко отличить на наличию наверху небольшого желтого винта под отвёртку, он должен быть рассчитан на сопротивление 22 кОм. Многооборотный резистор позволяет очень точно установить напряжение на выходе, вплоть до сотых долей вольта. Несколько слов про процедуру настройки. Сперва схему нужно включить «вхолостую», без аккумулятора, подключив на его место вольтметр. Затем, глядя на показания вольтметра вращать переменный резистор в ту или иную сторону для уменьшения или увеличения напряжение на выходе, установив там 4,1-4,2В. На этом процедура настройки схема будет закончена, можно подключать аккумулятор для зарядки.

Изготавливается схема зарядного на компактной печатной плате, которую затем можно поместить в подходящий корпус. При этом корпус зарядного будет включать в себя контакты либо разъём для питания (7-20В) и провода-крокодилы для подключения заряжаемого аккумулятора. Печатная плата прилагается в конце статьи в архиве, открыть её можно с помощью программ Sprint-Layout либо Proteus.

На картинке ниже показана фотография готовой платы. Обратите внимание, что микросхема LM317 впаивается прямо на плату, а потом вместе с платой крепится на радиатор. Светодиоды можно установить как прямо на плату, так и вывести на проводах на панель корпуса. Таким образом, получилось отличное самодельное зарядное устройство для литий-ионных аккумуляторов, в отличие от своим заводских аналогов, данная схема позволяет вручную настраивать ток заряда, а также напряжение, до которого будут заряжаться аккумуляторы. Стоит обратить внимание, что аккумуляторы очень чувствительны к перезаряду, а потому не стоит подключать в выходу схемы аккумулятор, предварительно на настроив порог подстроечным резистором. Удачной сборки!

Источник

Зарядное устройство батарей из трёх литий-ионных аккумуляторов

Предлагаемое зарядное устройство (ЗУ) предназначено для зарядки батарей из трёх элементов литий-ионных аккумуляторов стабильным током до заданного напряжения. ЗУ имеет следующие технические характеристики;

Параметр Значение
Способ зарядки Ток — Напряжение
Зарядный ток 1,5 A
Конечное напряжение 12,6 В
Тип преобразования Импульсный

В статье рассматривается небольшая переделка и доработка готовой конструкции, и за основу был взят импульсный блок питания, ремонт которого был представлен в предыдущей статье

В принципе можно использовать любой, подходящий по параметрам, преобразователь сетевого напряжения импульсного типа со стабилизацией выходного напряжения, и далее будет рассмотрено как переделать стабилизированный блок питания в зарядное устройство батареи аккумуляторов. Полная схема и конструктивные особенности переделываемого адаптера не имеют большого значения, поэтому была зарисована только часть схемы вторичного напряжения, в которой нужно будет произвести изменения и доработку, ставшая стандартной для большинства подобных устройств. Маркировка и порядковые номера радиоэлементов соответствуют обозначениям на плате устройства:

Для доработки в первую очередь нужно поднять верхний уровень выходного стабилизированного напряжения до 12,6 В, необходимого для полной зарядки батареи литий-ионных аккумуляторов из трёх элементов. Это напряжение задаётся цепью, состоящей из регулируемого интегрального стабилизатора напряжения параллельного типа TL431 и делителя из резисторов R15 и R16. На сайте «Паяльник» опубликована статья «Буферное зарядное устройство свинцовых аккумуляторов», где описана подобная возможность изменения напряжения стабилизации:

В данном же случае выходное напряжение можно повысить увеличением сопротивления резистора R15, и для этого можно воспользоваться TL431 калькулятором, но более точное значение сопротивления придётся подобрать опытным путём, и далее будет описано как это сделать.

Из расчётов было определено, что для получения выходного напряжения 12,6 Вольт резистор R15 нужно заменить на резистор сопротивлением 4,1 кОм. Для получения такого сопротивления на плату, вместо бывшего резистора, были установлены два параллельно соединённых резистора с сопротивлением 4,7 кОм и 33 кОм. Для расчёта общего сопротивления параллельно соединённых резисторов можно воспользоваться онлайн калькулятором

Сначала на плату был установлен резистор с сопротивлением 4,7 кОм, и с помощью мультиметра были отобраны несколько резисторов номинала 33 кОм с небольшим разбросом сопротивления. Далее, поочерёдно устанавливая каждый резистор и мультиметром замеряя выходное напряжение блока питания, нужно добиться максимально точного значения 12,6 Вольт. При сильно отличающемся напряжении в ту или иную сторону батарея не будет заряжаться до конца. При слишком низком значении, напряжения просто не хватит для полной зарядки, а при слишком высоком, зарядный ток в конце процесса зарядки не будет падать и плата защиты батареи преждевременно отключит её от цепи. Про это на сайте имеется статья «Самодельная разборная Li-ion 3S батарея с платой контроля и защиты HH — P3-10.8»

Всё это касалось повышения выходного напряжения дорабатываемого блока питания, но для правильной его работы как зарядного устройства, нужно ещё обеспечить постоянство зарядного тока в определённых пределах. Для этого на плате адаптера была разрезана, зачищена и просверлена токопроводящая дорожка положительного полюса вторичного питания, соединяющая два электролитических конденсатора фильтра. В этом месте был установлен токоизмерительный шунт R1 для модуля стабилизации и индикации тока зарядки. Так же был добавлен красный индикаторный светодиод LED2 с токоограничивающим резистором R2. Порядковые номера добавленных радиокомпонентов были заданы сначала, и они не пересекаются с уже имеющимися. Все изменённые и добавленные радиоэлементы на схеме выделены красным цветом:

Кроме этого был разработан и установлен модуль измерения/стабилизации и индикации зарядного тока. Модуль разрабатывался в несколько этапов и каждый раз его параметры улучшались по мере доработки. Изначально пороговым элементом являлся германиевый транзистор прямой проводимости типа МП41, а шунт имел сопротивление 0,33 Ом:

Резисторы R1, R2 и светодиод LED2 установлены на плате самого блока питания, а остальные компоненты были собраны на отдельной плате и двойными точками на схеме отмечены места соединения плат между собой.

Стабилизация работала, так же и индикация, но измерительный шунт заметно нагревался, а ток стабилизации сильно зависел от температуры внутри блока питания, что потребовало доработку модуля и применение кремниевого измерительного транзистора.

Но у кремниевых транзисторов пороговое напряжение открывания выше чем у германиевых, и для компенсации этого в схему была установлена стабильная вольт-добавка на таком же транзисторе:

Доработанная схема работала намного лучше, а сопротивление шунта, и следовательно выделение тепла на нём, получилось немного снизить. Принцип работы такой схемы с вольт-добавкой и расчёт её элементов был описан в статье «Простой способ стабилизации больших токов с малыми потерями на измерительном элементе»

В отзывах читателей указанной статьи было несколько хороших рекомендаций, которые далее были учтены и добавлены в первоначальную схему. Схема данного измерительного модуля так же была доработана и более точно были подобраны номиналы некоторых резисторов. Окончательный вариант схемы модуля представлен на рисунке:

Двойными точками с цифрами так же отмечены места подключения модуля с основной платой зарядного устройства, а полная схема доработанного выходного узла блока питания вместе с модулем измерения и индикации тока зарядки выглядит следующим образом:

  • Точка «1» подключается к минусу блока питания;
  • «2» — к выходному выводу токоизмерительного шунта;
  • «3» — к входному выводу шунта;
  • «4» — к оптрону обратной связи;
  • «5» — к светодиоду индикации зарядки.

После включения в сеть, пока через нагрузку не течёт ток, дополнительно установленный модуль не влияет на работу адаптера, и выходное напряжение стабилизировано на уровне 12,6 Вольт. При подключении заряжаемого аккумулятора через шунт протекает ток, который обнаруживается транзистором Q1 и далее усиливается транзистором Q3. Коллекторной нагрузкой последнего является светодиод оптрона обратной связи, который начинает светиться всё ярче с ростом протекающего через нагрузку тока, а так как с увеличением яркости его свечения скважность импульсов генератора преобразователя так же увеличивается, то выходное напряжение уменьшается и ток нагрузки стабилизируется. Этот ток зависит от порога открывания измерительного транзистора и задаётся сопротивлением резистора токового шунта.

В активном режиме стабилизации тока транзистор Q4 входит в насыщение и светодиод LED2 светится, сигнализируя о процессе зарядки аккумулятора. Транзистор Q2 играет ключевую роль в значении порога срабатывания измерительного транзистора Q1. На нём создаётся стабильная вольт-добавка, которая складываясь с напряжением на шунте прикладывается к переходу база-эмиттер транзистора Q1 и понижает порог его срабатывания, уменьшая тем самым количество выделяемого на шунте тепла.

Модуль был собран из миниатюрных радиокомпонентов на небольшом отрезке платы подходящих размеров методом навесного монтажа:

Плата была расположена в пространстве между радиаторами силового транзистора и диодной сборки, над импульсным понижающим трансформатором, в перевёрнутом виде, и соединена с основной платой жёсткими разноцветными проводами в двойной изоляции:

В дальнейшем так же была разработана печатная плата для изготовления модуля, на которой оставлена большая часть фольги для экономии вытравливающего раствора и соединения с массой и проводом заземления адаптера (не общим проводом, и не минусом питания), если такой имеется:

Вид печатной платы со стороны расположения радиоэлементов

Вид печатной платы со стороны проводников

Плата рассчитана на установку транзисторов типа КТ209В и КТ315Б, но их можно заменить любыми маломощными соответствующей структуры с коэффициентом передачи тока базы более 50. Ещё лучшие результаты работы будут, если применить транзисторные сборки, но тогда придётся изменить чертёж печатной платы.

Токо-измерительный шунт представляет из себя сложенный вдвое отрезок нихромовой проволоки с подобранным необходимым сопротивлением, но при наличии можно установить обычный низкоомный резистор, или резистор поверхностного монтажа. От его сопротивления в большей степени зависит уровень тока зарядки — чем меньше сопротивление, тем больше ток зарядки, который естественно должен уметь обеспечивать переделываемый блок питания:

Налаживание устройства заключается в установке выходного напряжения 12,6 В без нагрузки, подбором сопротивления верхнего резистора R15 делителя напряжения, и установке желаемого тока заряда подбором сопротивления измерительного шунта.

Для этого нужно взять заведомо большую длину нихромового провода, и подключив к выходу разряженную батарею установить необходимое сопротивление шунта, постепенно укорачивая провод и контролируя силу тока низкоомным амперметром. Подключать батарею нужно обязательно разряженную, так как в конце зарядки ток постепенно будет падать и не удастся установить его номинальное значение.

Производить наладку лучше с реальной батареей, а не с резистивной нагрузкой, так как заряжаемая батарея представляет из себя динамическую нагрузку, и если настраивать не в реальных условиях, то в дальнейшем показания будут отличаться.

Оба резистора, как для настройки выходного напряжения, так и тока нагрузки, расположены в удобных и доступных для многократной пайки местах:

Во время включения с подсоединённой аккумуляторной батареей светится зелёный светодиод индикатора наличия генерации и вторичного напряжения, и дополнительно установленный красный светодиод индикатора зарядки. Не нужно забывать о технике безопасности во время работы с высоким напряжением, и не следует дотрагиваться до оголённых и токопроводящих элементов устройства, находящихся под сетевым напряжением :

Для проверки и налаживания зарядного устройства использовался многофункциональный измеритель параметров заряда/разряда аккумуляторов, включённый по схеме с дополнительным питанием:

Максимальный ток зарядки был установлен в пределах 1,5 А при полностью разряжённой батареи, а по мере зарядки ток незначительно падал, и резко снижался в самом её конце. В этот момент индикаторный светодиод снижал яркость своего свечения, но всё равно оставался информативным, и полностью погасал по достижении полного(почти) заряда батареи, так как установленный в батарее контроллер размыкал цепь.

В завершение устройство было помещено в корпус, а на конец выходного кабеля был установлен унифицированный разъём XT60 с контактами типа «папа», применяющийся в литий-ионных и литий-полимерных батареях:

В последствии была изготовлена батарея на контроллере с установленной системой балансировки, и проверена возможность её зарядки сконструированным здесь зарядным устройством. Следите за новыми публикациями и оставляйте свои отзывы и рекомендации, которые возможно будут учтены при написании дальнейших статей. Смотрите так же дополнительные материалы по теме:

Источник

Читайте также:  Как сделать качелю своими руками с труб
Оцените статью