- Регулируемые стабилизаторы напряжения и тока LM317 (КР142ЕН12) и LM337 (КР142ЕН18) для источников и блоков питания.
- Простой лабораторный блок питания на LM317
- Принципиальная схема стабилизатора с регулировкой по напряжению
- Печатная плата стабилизатора с регулировкой по напряжению
- Скачать печатную плату стабилизатора на LM317
- Сборка стабилизатора на LM317
- Простой двух полярный стабилизатор напряжения на LM317.
- Скачать печатную плату
Регулируемые стабилизаторы напряжения и тока LM317 (КР142ЕН12) и LM337
(КР142ЕН18) для источников и блоков питания.
Характеристики, особенности применения, схемы включения, онлайн калькуля- торы. Однополярные и двуполярные блоки питания на ИМС LM317 и LM337.
Среди микросхем регулируемых стабилизаторов напряжения и тока одними из самых популярных являются ИМС LM317 и LM337. Благодаря своим приличным характеристикам, низкой стоимости и удобного для монтажа исполнения, эти микросхемы при минимальном наборе внешних деталей отлично справляются с функцией несложных регулируемых источников и блоков питания для бытовой и промышленной электронной аппаратуры.
Микросхемы идентичны по своим параметрам, разница заключается лишь в том, что LM317 является регулируемым стабилизатором положительного относительно земли напряжения, а микросхема LM337 — регулируемым стабилизатором отрицательного напряжения.
Аналогами стабилизатора LM317 на отечественном рынке является модификация КР142ЕН12, а LM337 — КР142ЕН18.
Если полутора ампер выходного тока покажется недостаточно, то LM317 можно заменить на LM350 с выходным током 3 ампера и LM338 — 5А. Схемы включения останутся точно такими же.
Для удобства описание поведём для более распространённого стабилизатора блока питания с положительной полярностью напряжения (LM317), но всё сказанное и нарисованное на схемах будет так же верно для стабилизаторов с минусовой полярностью (LM317). Однако важно заметить, что при смене полярности стабилизатора — необходимо также изменить на схемах: полярность включения всех диодов, электролитических конденсаторов, а также тип проводимости внешних транзисторов (в случае их наличия). И не стоит забывать, что цоколёвки у этих микросхем разные!
Начнём с главного:
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТАБИЛИЗАТОРОВ LM317, LM337 в корпусе TO-220:
Максимальное входное напряжение блока питания — 40 В;
Регулирование выходного напряжения — от 1,25 до 37 В;
Точность установки и поддержания выходного напряжения — 0,1%;
Максимальный ток нагрузки — 1,5 A;
Минимальный ток нагрузки — 3,5. 10 мА;
Наличие защиты от возможного короткого замыкания и перегрева;
Давайте не будем сильно отвлекаться на разнообразные любительские реализации стабилизаторов на LM317 и LM337, а сделаем основной упор на рекомендациях и схемах, приведённых в datasheet-ах на микросхемы. Типовая схема включения LM317 с функцией регулировки напряжения приведена на Рис.1
Рис.1 Типовая схема включения LM317
Диоды D1 и D2 предназначены для защиты микросхемы, а конкретно — быстрого и безопасного разряда конденсаторов в случае возникновения короткого замыкания (D1 — по входу, D2 — по выходу). При выходных напряжениях менее 25 В производитель ИМС допускает работу стабилизатора без использования защитных диодов.
Конденсатор С2 снижает уровень пульсаций на выходе микросхемы на 15 дБ. Увеличение номинала этого конденсатора свыше 10 МкФ не только не приведёт к существенному снижению пульсаций, но и окажет вредное влияние на скорость реакции стабилизатора на изменение выходного напряжения.
Номинал резистора R1 жёстко определяется в техническом паспорте как 240 Ом, хотя ничего плохого не случится, если выбрать его значение в диапазоне 200. 270 Ом.
Величина R2 вычисляется исходя из формулы Vout = Vref x (1+R2/R1) + Iadj x R2 , где
Vref ≈ 1,25В , а Iadj ≈ 50 мкА .
Онлайн калькулятор для расчёта стабилизатора напряжения на основе LM317 (LM337).
Выходное напряжение не может принимать значений ниже 1,25 В.
На Рис.2 изображена схема интегрального стабилизатора напряжения с функцией плавного пуска питания, собранная на всё том же регуляторе напряжения LM317 и тоже взятая из datasheet-а на микросхему.
Рис.2 Схема стабилизатора напряжения с функцией плавного пуска питания
В начальный момент включения источника питания конденсатор C1 разряжен и представляет собой КЗ. Напряжение на эмиттере транзистора близко к нулю, соответственно напряжение на выходе микросхемы минимально и составляет величину — около 1,2 В. По мере заряда конденсатора напряжение на эмиттере растёт, напряжение на выходе микросхемы — тоже. В какой-то момент напряжение на базе достигнет значения, при котором транзистор полностью закроется, и на выходе стабилизатора установится уровень напряжения, определяемый номиналами резисторов R1, R2.
При установке защитных диодов (как это сделано на Рис.1) ничто не мешает использовать эту схему и с более высокими выходными напряжениями.
Если возникла необходимость ввести в блок питания стабилизатор (ограничитель) тока нагрузки, то для этой цели также подойдёт ИМС LM317, причём схема получается ещё проще, чем в случае использования её в качестве стабилизатора напряжения.
Рис.3 Ограничитель тока на LM317
Такое устройство может быть полезно для зарядки аккумуляторов, питания светодиодов, ограничения тока нагрузки источника питания и т. д.
При выборе номинала сопротивления R1 в диапазоне 0,8. 125 Ом ограничение выходного тока будет происходить на уровнях: от 10 мА до 1,56 А, а формула, для расчёта конкретного значения тока выглядит следующим образом: I0 = Iadj + Vref/R1 ≈ 1,25/R1 .
Онлайн калькулятор для расчёта стабилизатора тока на основе LM317 (LM337).
Если необходимо поиметь в хозяйстве источник, как с регулировкой выходного напряжения, так и с ограничением выходного тока, то существует возможность использовать два варианта:
1. Соединить последовательно стабилизатор тока (Рис.3) и стабилизатор напряжения (Рис.1), либо
2. Либо использовать ещё одну схему из datasheet-а.
Рис.4 Схема стабилизатора с ограничением выходного тока
Область применения схемы, приведённой на Рис.4, декларируется производителем — как зарядное устройство для 6-вольтовых аккумуляторов, но её вполне можно расширить, подключив к выходу любую нагрузку и используя обвес, взятый с типовой схемы включения (Рис.1).
Ток ограничения (стабилизации) устройства рассчитывается исходя из формулы: I0 ≈ 0,6//R1 , А учитывая дополнительное падение напряжения на резисторе R1, при расчёте выходного напряжения в калькуляторе — следует вводить величину Uвых, на 0,6 В превышающую необходимое значение.
Теперь что касается умощнения микросхем. Здесь datasheet также предполагает 2 варианта:
1. Параллельное соединение микросхем, но не примитивное (как порой можно встретить на некоторых интернет просторах), а довольно сложное, посредством ОУ и дополнительного транзистора. Эту схему я не вижу особого смысла рассматривать ввиду того, что подобную задачу можно решить более гуманными методами.
2. Умощнение внешним транзистором (Рис.5):
Рис.5 Умощнение стабилизатора напряжения на LM317 внешним транзистором
Силовой умощняющий транзистор следует выбирать исходя из максимального тока нагрузки и максимальной мощности, рассеиваемой на нём.
До того момента, когда падение напряжения на резисторе R1 достигнет уровня 0,6. 0,7 В транзистор закрыт, и весь ток в нагрузку течёт через микросхему стабилизатора. При достижении указанного уровня падения напряжения транзистор приоткрывается и также начинает отдавать ток в нагрузку, разгружая тем самым микросхему. Чем больше ток — тем сильнее открыт транзистор, тем большее относительное значение тока через него протекает в нагрузку.
Главный вопрос, возникающий у радиолюбителя — какого номинала следует выбирать резистор.
Для начала надо задаться некой величиной тока, протекающего через ИМС стабилизатора Ireg , не слишком большой (чтобы микросхема не сильно грелась), но и не слишком малой (для сохранения её стабильной и устойчивой работы). Обычно величина это тока выбирается в пределах 0,1. 0,3 А.
Определившись с этим значением, следует выбрать транзистор, исходя из максимального тока нагрузки, с параметром β > 1.1 x Iнмакс / Ireg . Будет лучше, если запас усиления транзистора составит величину — 10. 20%.
Тогда значение R1 можно будет вычислить по следующей формуле:
R1 ≈ (β x Vбэ) / (Ireg x β — Iнмакс) , где Vбэ ≈ 0,7В для простых транзисторов и 1,4В — для составных.
Таким же способом можно умощнить и стабилизатор (ограничитель) тока нагрузки (Рис.6).
Рис.6 Умощнение стабилизатора тока на LM317 внешним транзистором
И под занавес приведу схему двуполярного источника питания с регулируемым напряжением (± 1,2. 35 В), опубликованную в одном из зарубежных источников (Рис.7).
Рис.7 Схема двуполярного блока питания
Для повышения надёжности устройства в него следует добавить пару защитных диодов по аналогии со схемой, изображённой на Рис.1.
Источник
Простой лабораторный блок питания на LM317
Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.
Принципиальная схема стабилизатора с регулировкой по напряжению
Печатная плата стабилизатора с регулировкой по напряжению
Скачать печатную плату стабилизатора на LM317
Достоинства данного стабилизатора.
- простота в изготовлении
- надежность
- дешевизна
- доступность компонентов
Недостатки
- низкий КПД.
- необходимость использования массивных радиаторов.
- не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.
Для изготовления данного устройства Вам понадобится:
- Стабилизатор LM317 -1шт.
- Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
- Диод КД522 или аналогичный -1шт.
- Резистор R1 -47ОМ желательно от 1Вт -1шт.
- Резистор R3 220Ом от 0.25 Вт -1шт.
- Переменный резистор линейный — 5кОм -1шт.
- Конденсатор электролитический 1000мФ от 50В -1шт.
- Конденсатор электролитический 100мФ от 50В -1шт.
- Диодный мост током от 5А
Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.
Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.
Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.
Сборка стабилизатора на LM317
Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.
Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.
Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.
На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.
У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.
Готовый блок питания выглядит так.
Простой двух полярный стабилизатор напряжения на LM317.
За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.
Характеристики и достоинства двух полярного стабилизатора
- напряжение стабилизации от 1,2 до 30 В;
- максимальный ток до 5 А;
- используется малое количество элементов;
- простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;
Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.
Скачать печатную плату
На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.
На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.
Источник