- 2 Схемы
- ШИМ-контроллер вентилятора охлаждения
- Типы вентиляторов постоянного тока
- Вентиляторы PWM и правила управления
- Схема самодельного ШИМ контроллера кулера
- Автоматическая регулировка оборотов кулера 3-pin или реобас своими руками
- Приступаем к сборке:
- Управление оборотами 3-pin вентилятора посредством ШИМ(PWM)
2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
ШИМ-контроллер вентилятора охлаждения
Всем доброго времени. Сейчас мы поговорим о регулировании скорости охлаждающих вентиляторов с ШИМ — широтно-импульсной модуляцией (PWM). Также изучим практический проект схемы контроллера для вентилятора или мощных светодиодов, который можно сделать из нескольких деталей.
В последнее время растет интерес к схемам драйверов для управления скоростью охлаждающих вентиляторов, используемых в электронном оборудовании. Простейшим двухпроводным драйвером является схема включения / выключения, которая запускает вентилятор с помощью управляющего сигнала, когда температура датчика превышает пороговое значение, и останавливает его, когда температура падает ниже порогового уровня.
В более сложных версиях драйверов используется линейная схема управления напряжением, в которой постоянное напряжение, подаваемое на вентилятор, меняется с помощью регулятора напряжения. Чтобы вентилятор работал на более низкой скорости, напряжение снижают, а для работы на более высокой скорости — повышают.
Наиболее современная схема драйвера для управления скоростью вентилятора использует метод ШИМ. В этой схеме драйвера управляющий сигнал с широтно-импульсной модуляцией обычно подается на полевой транзистор, который подключен к стороне высокого или низкого уровня вентилятора. Вентилятор будет включаться / выключаться с определенной частотой, а скорость вращения вентилятора регулируется рабочим циклом сигнала ШИМ.
Типы вентиляторов постоянного тока
Существует три основных типа вентиляторов постоянного тока (они же кулеры): двухпроводные, трехпроводные и четырехпроводные.
- Двухпроводной вентилятор имеет два контакта — питание и заземление. Этим вентилятором можно управлять либо путем изменения напряжения постоянного тока, либо с помощью управляющего сигнала ШИМ.
- У трехпроводного вентилятора есть сигнал тахометра, который показывает скорость вращения. Этим вентилятором также можно управлять, изменяя напряжение постоянного тока или используя низкочастотный управляющий сигнал ШИМ.
- Четырехпроводной вентилятор имеет специальный вход PWM, который можно использовать для управления скоростью.
Вентиляторы PWM и правила управления
Сигнал ШИМ прямоугольного типа должен подаваться на вход PWM вентилятора и соответствовать следующим спецификациям:
- Целевая частота: 25 кГц, допустимый диапазон от 21 кГц до 28 кГц
- Максимальное напряжение для низкого логического уровня: VIL = 0,8 В
- Абсолютный максимальный получаемый ток: Imax = 5 мА (ток короткого замыкания)
- Абсолютный максимальный уровень напряжения: Vmax = 5,25 В (напряжение холостого хода)
- Допустимый диапазон рабочего цикла: от 0% до 100% (не инвертируется. Рабочий цикл 100% PWM / 5 В приводит к максимальной скорости вентилятора)
Внешний подтягивающий резистор здесь не нужен, так как сигнал подтягивается до 3,3 В / 5 В внутри вентилятора. Кроме того, работа при цикле ШИМ ниже 20% официально не поддерживается в спецификации (неопределенное поведение). Тем не менее, большинство вентиляторов PWM могут работать при нагрузке ниже 20% и остановятся при рабочем цикле лишь 0%. Они работают на полной номинальной скорости при отсутствии входного сигнала ШИМ.
Внимание: подключение напряжения питания 12 В к выводу ШИМ приведет к немедленному повреждению вентилятора!
Далее показано изображение трехпроводного кулера. Кажется что это обычный бесщеточный мотор постоянного тока (BLDC) с выходом тахо-сигнала, но это вентилятор с ШИМ (KFB-1412H от Delta Electronics), сделанный для PS3, а его третий провод — для управления скоростью вентилятора.
Если надо подключить этот вентилятор, просто подайте 12 В на коричневый (+ V) и черный (GND) провода, а на серый (PWM) подайте последовательность импульсов уровня TTL (5 В), близкую к 25 кГц от сигнала генератора, и изменяйте коэффициент заполнения последовательности импульсов (0–100%), чтобы отрегулировать скорость.
Обычно скорость кулера с ШИМ масштабируется линейно с рабочим циклом сигнала PWM между максимальной скоростью при 100% и указанной минимальной скоростью при 20%. Например, если вентилятор с PWM имеет максимальную скорость 2000 об / мин и минимальную скорость 450 об / мин, он будет работать со скоростью 2000 об / мин при 100% PWM, 450 об / мин при 20% и около 1100 об / мин при 50% PWM.
Некоторые производители рекомендуют использовать для управления схему типа CMOS-инвертора, подобную показанной выше.
Схема самодельного ШИМ контроллера кулера
Основной выход PWM подключен к силовому транзистору (T1) для управления нагрузкой 12 В. Как видите, дополнительный инвертированный выход ШИМ также доступен для других целей. На самом деле столь мощный транзистор TIP41C (T1) в этой конструкции немного излишний, можете выбрать другой.
При экспериментах использовалась эта схема для «линейного» управления напряжением 2-проводного вентилятора 12V BLDC, и она работала отлично.
Шестиэлементный триггер Шмитта CD 40106 является основой этого проекта. Микросхема недорогая и будет работать в широком диапазоне напряжений.
CD4016 (CD4016B / CD40106BE) содержит шесть инверторов, которые можно использовать для создания простых генераторов сигналов прямоугольной формы с одним резистором и конденсатором. Вход подключен к конденсатору, который идет на землю, а резистор идет от выхода. С помощью одного потенциометра и двух диодов можно изменить рабочий цикл или ширину импульса прямоугольной формы. Потенциометр изменяет способ прохождения обратной связи через два диода, что приводит к асимметричным колебаниям.
Представленная простая конструкция может использоваться для управления различными типами вентиляторов и ламп (в том числе светодиодных). Генератор прямоугольных сигналов CD40106 генерирует управляющий ШИМ на основе частоты и рабочего цикла, установленных соответствующими компонентами синхронизации RC. Конечный выходной сигнал может в дальнейшем использоваться разными способами, при условии что он настроен правильно для предлагаемого устройства.
Источник
Автоматическая регулировка оборотов кулера 3-pin или реобас своими руками
Сразу скажу, что обзор не планировался и фото делались на утюг, так что качество будет соответствующее. Но я посчитал, что данный обзор может быть полезен и пересилив себя – сел писать. Так же предупреждаю, что мои познания в мире радиодеталей находятся на, скажем так, очень низком уровне.
Началось все с того, что я решил я перейти на дешевую, и в то же время производительную, платформу 2011-v3 с минимальными финансовыми вложениями. До этого сидел платформе AM3 с Phenom II X4.
При изучении рынка китайских материнских плат была выбрана самая дешевая, четырехканальная мать X99z v102, она же Machinist x99, Kllisre x99 и т.д. На этой плате всего 2 разъема для кулера – один 4 pin, и один 3 pin.
Принцип работы его такой – с материнской платы он берет сигнал ШИМ, а от кулера, подключённого в красный разъем, передает показания датчика оборотов. ШИМ сигнал разветвлен на все разъёмы разветвителя, а питание 12 вольт и земля берется с разъёма Molex.
Все кулеры кроме процессорного у меня 3 pin и как известно совместимы с 4 pin разъёмами, только без регулировки вращения. Все было бы хорошо, если бы не увеличения шума кулеров.
Как оказалось, прошлая материнка от Gigabyte, возможно и не регулировала обороты трёхпиновых кулеров, но они не молотили на ней на полную мощность.
Например, кулер на передней стенке корпуса всегда работал на 1200 оборотах — почти бесшумно, и я думал, что это его максимальные обороты. Но на новой материнке он начал молотить на более чем 2 тыс. оборотах и издавая очень некомфортный шум.
Начал смотреть цены на 4 pin кулеры и скажу честно – они мне не понравились). Потом решил купить реобас, но с ручной регулировкой оборотом меня не устраивали, а те которые регулируют обороты по термодатчику, с необходимостью разместить его в корпусе ПК, в основном имели один разъем для кулера.
Далее великий и могучий Гугл выдал мне много интересных статей, на запрос «Как регулировать обороты 3 pin кулера» и было решено сделать реобас на основе разветвителя, купленного ранее и полевого транзистора.
Транзистор был выбран n-канальный IRLZ34NPBF — Даташит, так как он показался мне наиболее подходящим из того что было в наличии у нас в городе, резисторы у меня были.
Вроде больше ничего и не нужно по тем схемам, что я находил ранее, но уже при сборке случайно прочитал про индуктивную нагрузку для транзисторов и что нужно ставить защитный диод. Хорошо, что были в наличии диоды Шоттки — 1N5819, так как собирал я это все ночью и растягивать на несколько дней не хотелось.
Схема по которой ориентировался при сборке
Приступаем к сборке:
1. Выпаиваем конденсатор и перерезаем земляную дорожку, в ее разрыв мы будем впаивать транзистор
2. Впаиваем транзистор по такой схеме:
1) Сток — к минусовому контакту на месте конденсатора.
2) Исток – к минусу разъёма Мolex (любой из двух средних контактов)
3) Затвор через резистор к контакту с ШИМ сигналом, это 4 контакт кулерного разъёма.
Я впаял резистор на 330 ом, в разных схемах видел от 100 ом до 10 кОм.
3. Далее нюанс.
Если процессорный кулер у вас 4 pin вам нужно перерезать минус, идущий к красному разъёму и кинуть его в обход транзистора, если 3 pin — ничего делать не нужно.
4. Паяем Диоды катодом к плюсу, а анодом к минусу.
Возможно можно обойтись одним мощным диодом в такой сборке, надеюсь в комментариях напишут
Вот и все, теперь подключаем разветвитель к молексу блока питания и комплектным проводом к процесорному разъему 4 pin на материнской плате. Процессорный кулер подключаем в красный разъем разветвителя.
К остальным разъемам подключаем свои 3-pin кулеры, можно и 2-pin, так как они тоже прекрасно регулируются по такой схеме.
У меня все кулеры стартуют нормально, обороты регулируются в зависимости от температуры процессора. В простое работают безшумно на минимальных оборотах, а при нагрузке в полную мощность.
Если у вас какой-то кулер не стартует, то добавьте в схему, после транзистора, конденсатор микрофарад на 100.
Источник
Управление оборотами 3-pin вентилятора посредством ШИМ(PWM)
Приветствую Вас! Это моя первая запись на ПС.
Комп оборудован самодельной СВО,холодно,тихо,разгон -все замечательо.В системнике два вентилятора,120мм обдувал видеокарту(x1950gt Palit 512MB),а 250мм работает на вдув(корпус Aerocool) и третий в БП.Вентиляторы подключались параллельно через эмиттерный повторитель к разъему кулера видеокарты(2-pin),а сам кулер уступил место водоблоку.Схема работы очень проста,напряжение(читай обороты) на коннекторе кулера видеркарты регулируется в Riva Tuner и вентиляторы крутятъся как мне угодно.
Все было хорошо до смены видеокарты на GF8800 GT 512MB Palit(синий кулер,не Sonic).Карта была подвегнута недельной пытке(разгон и тесты, на чем только можно),после чего поставил на нее «воду»,а кулер, соответственно, отправился отдыхать.
Теперь ближе к делу.На этой карте кулер имеет четыре контакта и управляется ШИМ-сигналом, моя схема отказалась регулировать обороты.Пришлось расширить свои познания о технологии широтно-импульсной модуляции в интернете.Решение оказалось довольно простым -применить полевой транзистор,а не биполярный.Cхему приводить не буду,достаточно фотографии «изделия».
Паяем!
Я применил полевой транзистор D50NH,всем хорошо знакомый MOSFET.Донором послужила видеокарта 7600gt Palit,павшая жертвой вольтмода более года назад.Транзистор включается в разрыв черного провода(«-» или «земля»), ШИМ-сигнал подается на затвор транзистора с видеокарты(на моей это синий провод или 1-й контакт слева).Желательно это сделать через резистор 1-2кОм «на всякий случай»,т.к полевики боятся статики.Как видно на фото,питается вентилятор через 3-pin разъем и подключен к материнке,можно и к видеокарте подкючить,при наличии соответствующего разъема.Если все подкючено верно и транзистор не «битый»,вентиль становится «послушным».
Таким не хитрым способом можно регулировать любой вентилятор.Не редко меняют «боксовый» кулер с 4-pin(ШИМ) коннектором на более эффективный,но оснащенный вентилятором с 3-pin разъемом,при этом на материнке остается невостребованным именно четвертый контакт с ШИМ сигналом.Теперь и его задействовать можно,например, у меня подключен корпусной 250мм вентиль,но им уже рулит Speedfan.
Надеюсь,мой опыт кому-то окажется полезным.
P.S
На фото черный провод на маленьком 2-pin разъеме ИЗОЛИРОВАН! Лень отрезать было.
Мониторинг оборотов в этой схеме не РАБОТАЕТ! Провод таходатчика необходимо отключить(по совету крупного спецталиста),во избежание повреждения схемы мониторинга оборотов или вентилятора!
Источник