Rlc метры своими руками

Простенький измерятор RLC

Понадобилось тут измерять индуктивность. Погуглил проекты LC-метров, и как-то ничего не понравилось. То на каких-то пиках, то с каким-то непонятным экранчиком, который хз где брать. Взял, и сделал своё. Пару минут на сборку и минут 10 на написание прошивки.

Принцип работы проще пареной репы.

Для измерения ёмкости, замеряем постоянную времени RC-цепочки (равную R*C).

Выставляем единичку на ножке PB0, и ждём, пока сработает компаратор.

Соответственно, для измерения индуктивности замеряем постоянную времени RL-цепочки (равную L/R).

Когда срабатывает компаратор, показываем на экрачнике задержку срабатывания в тактах.

Алгоритм работы с «прибором» следующий. Подключаем элемент с известным номиналом, подстройкой опорного напряжения и резистора в измерительной цепочки подстраиваем разрешение «прибора». Например, 100пф на «такт».

И для индуктивностей. Самое лучшее, что у меня получилось — 2 мкГн на «такт».

Данный, с позволения сказать, прибор, сделанный за несколько минут неожиданно порадовал неплохой точностью и линейностью. Прикольно.

Источник

Rlc метр своими руками схема

Описание измерительной программы RLC-meter

Программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов. Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штекера, резистор, провода и щупы).

2 версии программы можно скачать в разделе Software .

Это еще один вариант, пополняющий и без того обширную коллекцию аналогичных программ. Здесь не воплощены все задумки, работа над которыми продолжается. Функционирование «основы» вы можете оценить прямо сейчас.

В основу заложен общеизвестный принцип определения амплитудных и фазовых соотношений между сигналами с известного (образцового) компонента, и с компонента, параметры которого надо определить. В качестве тестового используется сигнал синусоидальной формы, генерируемый звуковой картой. В первой версии программы использовалась только одна фиксированная частота 11025 Гц, в следующей версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей.

Выбор именно этой частоты (четверть от частоты сэмлинга) является главной «инновацией», отличающей этот проект от остальных. На такой частоте алгоритм интегрирования по-Фурье (не путать с БПФ – быстрым преобразованием Фурье) максимально упрощается, а нежелательные побочные эффекты, приводящие к росту шума в измеряемом параметре, полностью пропадают. В итоге кардинально улучшается быстродействие и снижается разброс показаний (особо ярко выраженный на краях диапазонов). Это позволяет расширить диапазоны измерений и обойтись только одним образцовым элементом (резистором).

Собрав схему согласно рисунку и установив регуляторы уровня Windows в оптимальное положение, а также произведя начальную калибровку по закороченным между собой щупам («Cal.0»), можно сразу же приступать к измерениям. С такой калибровкой без труда ловятся низкие сопротивления, в том числе ESR, порядка 0,001 ом, а СКО (среднеквадратическое отклонение) результатов измерений в этом случае составляет порядка 0,0003 ом. Если зафиксировать положение проводов (чтобы не менялась их индуктивность), то можно «ловить» индуктивности порядка 5 нГн. Калибровку «Cal.0» желательно проводить после каждого старта программы, поскольку положение регуляторов уровня в среде Windows может быть, в общем случае, непредсказуемым.

Схема подключения к звуковой карте:

Чтобы расширить диапазон измерений в область больших R, L и малых C, требуется учитывать входное сопротивление звуковой карты. Для этого служит кнопка «Cal.^», нажимать на которую надо при разомкнутых между собой щупах. После такой калибровки можно достичь следующих диапазонов измерений (при нормировании случайной составляющей погрешности на краях диапазонов на уровне 10%):

по R – 0.01 ом … 3 Мом,

по L – 100 нГн … 100 Гн,

по C – 10 пФ … 10 000 мкФ

(для версии с двумя рабочими частотами)

Минимальная погрешность измерения определяется допуском образцового резистора. Если предполагается использование обычного ширпотребовского резистора (и даже с номиналом, отличным от указанного), в программе предусмотрена возможность его калибровки. Соответствующая кнопка «Cal.R» становится активной при переходе в режим «Ref.» Величина резистора, который будет использоваться в качестве эталонного, задается в файле *.ini в качестве значения параметра «CE_real». После калибровки уточненные характеристики образцового резистора запишутся в виде новых значений параметров «CR_real» и «CR_imag» (в 2-х частотной версии параметры измеряются на двух частотах).

С регуляторами уровня программа напрямую не работает – пользуйтесь стандартным микшером Windows или аналогичным. Шкала «Level» служит для настройки оптимального положения регуляторов.

Здесь можно порекомендовать такую методику настройки:

1. Определиться, какой регулятор отвечают за уровень воспроизведения, а какой – за уровень записи. Остальные регуляторы желательно заглушить для минимизации вносимых ими шумов. Регуляторы балланса – в среднее положение.

2. Исключить прегрузку по выходу. Для этого, установив регулятор записи в положение ниже среднего, с помощью регулятора воспроизведения найти ту точку, где ограничивается рост столбика «Level», а затем немного отступить назад. Скорее всего перегрузки вообще не будет, но для надежности регулятор лучше не выводить на отметку «макс».

3. Исключить прегрузку по входу – регулятором уровня записи сделать так, чтобы столбик «Level» не доходил до конца шкалы (оптимальное положение – 70…90%) в отсутствии измеряемого компонента, т.е. при разомкнутых щупах.

4. Замыкание щупов между собой не должно приводить к сильной просадке уровня. Если это так, то выходные усилители звуковой карты слишком слабы для данной задачи (иногда решается настройками карты).

Требования к системе

– ОС семейства Windows (тестировалась под Windows XP),

– поддержка звука 44,1 ksps, 16 bit, stereo,

– наличие одного аудио устройства в системе (если окажется несколько, то программа будет работать с первым из них, и не факт, что у веб-камеры окажутся гнезда «Line In» и «Line Out»).

Читайте также:  Бал маскарад маски своими руками

Особенности измерений, или чтобы не попасть впростак

Любой измерительный инструмент требует знания его возможностей и умения правильно интерпретировать результат. Например, при использовании мультиметра стоит задуматься, а какое переменное напряжение он, собственно, меряет (при отличии формы от синусоидальной)?

В нашем случае неизвестный компонент рассматривается как последовательно включенные активное и реактивное сопротивления, значения которых программа пытается определить. И если у компонента окажутся дополнительные паразитные параметры (например – сопротивление утечки у электролитического конденсатора), то результаты будут искажены. В примере с конденсатором сопротивление утечки пересчитается в последовательное, что в сумме с истинным последовательным сопротивлением даст завышенный результат. У катушек собственная емкость обмотки приведет к занижению индуктивности, вплоть до получения отрицательных значений (свойственно катушкам с очень большим числом витков, например – обмоткам трансформаторов). Так что критически относитесь к результатам измерений!

В 2-х частотной версии для измерения больших емкостей и индуктивностей используется низкая (1,1 кГц) частота. Граница перехода отмечена сменой цвета шкалы с зеленого на желтый. Аналогично меняется и цвет показаний – с зеленого на желтый при переходе к измерениям на низкой частоте.

Стереофонический вход звуковой карты позволяет организовать «четырехпроводную» схему подключения только для измеряемого компонента, схема же подключения эталонного резистора остается «двухпроводной». При таком раскладе любая нестабильность контакта разъема (в нашем случае – земляного) может исказить результат измерения. Ситуацию спасает относительно большая величина сопротивления эталонного резистора по сравнению к нестабильностью сопротивления контакта – 100 ом против долей ома.

И последнее. Если измеряемый компонент – конденсатор, то он может оказаться заряженным! Даже разряженный электролитический конденсатор со временем может «собрать» оставшийся заряд. Схема не имеет защиты, так что вы рискуете вывести из строя свою звуковую карту, а в худшем случае – сам компьютер. Сказанное относится и к тестированию компонентов в устройстве, тем более – не обесточенном.

Сообщества › Электронные Поделки › Блог › LCF-метр на ATMEGA8 и LCD1602

Я уже собирал несколько измерительных приборов, Частотомер, испытатель транзисторов.
Но, как говорится «наши руки, не для скуки» решил собрать Измеритель LCF. Схему и всю подноготную почерпнул с этой страницы LCF-метр на ATMEGA8 и LCD1602.

Данный прибор предназначен для измерения ёмкости конденсаторов, индуктивности и частоты.

Конденсаторы:
Диапазон измерений: 0,1 pF ÷ 10 000,0 uF.
Измерения проводятся в трех диапазонах, переключение диапазонов автоматическое.
В первом диапазоне измеряются емкости до 100 nF, во втором до 100 uF, в третьем выше 100 uF.

Индуктивность:
Диапазон измерений: 0,1 uH ÷ 100,0 H.

Частота:
Диапазон измерений: 1 Hz ÷ 4 MHz.

Выбор измеряемого параметра осуществляется кнопкой «Выбор» по кругу.
Если параметр выходи за пределы измерения на индикатор выводятся прочерки.

Схему и плату делал в ДипТрейс под свои компоненты.

Сначала собирал прибор в безкорнусном варианте на ATMega8(32). В моём архиве есть вариант этой платы.
Но побывав в магазине Чип и Дип обнаружил там много разных корпусов для РЭА
И сразу решил оформлять прибор в подходящий корпус.
Корпус G1204B 142.8×8, 5×38мм как нельзя лучше подходил для данного проекта. Тем более блок питания в корпусе я размещать не собирался. Место было много, я и не старался мельтешить.

Вот готовое устройство.

Что касаемо применяемых деталей, к точности номиналов никаких особых требований нет.

В прилагаемом архиве есть несколько прошивок, как на русском, так и на английской мове. Установите какую понравится, по функционалу разницы не заметил.

Фьюзы для ATMega8 будут
LOW= DE
HIGH= D9

После включения прибор начинает работать сразу, но прежде чем начать им пользоваться его следует его откалибровать. Привожу инструкцию автора по калибровке прибора.

Калибровка измерителя емкости.
1. Для калибровки следует выбрать режим измерения емкости и нажать на кнопку SET. В верхней строке дисплея появятся настроечные коэффициенты. Устанавливаемый параметр мигает. В нижней строке измеренная емкость.
2. К входным щупам не должно быть никаких подключений.
3. Нажать на кнопку PLUS или MINUS – произойдет настройка показаний емкости на 0. Коэффициент Z1 (Z2, Z3) установится автоматически. Если показания не стали нулевыми – операцию повторить.
4. Подключить к щупам образцовый конденсатор (для нижнего диапазона 1 nF ÷ 100 nF, для второго 100 nF ÷ 100 uF, для третьего 100 uF ÷ 10000 uF). Прибор автоматически выберет предел измерения.
5. Если показания емкости отличаются от номинала конденсатора – нажать на кнопку SET, начнет мигать параметр C1 (C2, C3).
6. Кнопками PLUS/MINUS установить требуемую емкость.
7. Повторить настройку, начиная с п.1.
8. Все диапазоны настраиваются аналогично. (В верхних диапазонах параметр Z2, Z2 как правило устанавливается в 0.)
9. Через 10 сек от последнего нажатия на кнопки прибор перейдет в основной режим, настройки запишутся в память.
10. Если из основного режима нажать на кнопки PLUS/MINUS, то произойдет установка коэффициентов Z1 (Z2, Z3).

Калибровка измерителя индуктивности.
1. Для калибровки следует выбрать режим измерения индуктивности и нажать на кнопку SET. В верхней строке дисплея появятся настроечные коэффициенты. Устанавливаемый параметр мигает. В нижней строке измеренная индуктивность.
2. Закоротить входные щупы.
3. Нажать на кнопку PLUS или MINUS – произойдет настройка показаний индуктивности на ноль. Параметр L0 устанавливается автоматически. Если показания не стали нулевыми – операцию повторить.
4. Подключить к щупам индуктивность известного номинала.
5. Если показания индуктивности отличаются от номинала – нажать на кнопку SET, начнет мигать параметр LC.
6. Кнопками PLUS/MINUS установить требуемую индуктивность.
7. Повторить настройку, начиная с п.1.
8. Через 10 сек от последнего нажатия на кнопки прибор перейдет в основной режим, настройки запишутся в память.
9. Если из основного режима нажать на кнопки PLUS/MINUS, то произойдет установка коэффициента L0 (настройка показаний на ноль, при этом щупы должны быть замкнуты).

Моя оценка работы прибора.
Начну с простого. Частоту прибор меряет достаточно точно и хорошая чувствительность, максимальное напряжение не мерил, щупы в розетку не совал.

Замер индуктивностей, на сколько точно он меряет не знаю эталонной индуктивности у меня не оказалось, но меряет.

Читайте также:  Брошюровка дерева своими руками с помощью болгарки

Как выбрать RLC измеритель

На практике часто нужно определить тип или параметры резисторов, конденсаторов, катушек индуктивности. Радиодетали несовершенны, как всё в нашем мире, зачастую из-за отсутствия или повреждения маркировки, износа или старения радиокомпонентов, определение номинала становится сложной задачей.

Чтобы определить сопротивление, емкость или индуктивность применяют измерители RLC, ESR. В статье разберем на примерах как провести замеры и подскажем, как выбрать оптимальное техническое решение для ваших прикладных задач.

Время чтения: 20 минут
Автор статьи — Андрей Кириченко

Что такое измеритель импеданса и тестер полупроводников

Так уж сложилось, что чаще всего радиолюбители пользуются тремя основными приборами — вольтметром, амперметром, омметром, но иногда возникают ситуации, когда для работы необходим более сложный, редкий прибор — измеритель RLC иммитанса или LCR-метр.

При этом конечно подобные измерительные устройства также бывают как профессиональные, так и «любительские», но для начала о том, что это вообще такое.

Как уже следует из названия, прибор позволяет измерять три основных величины:

      L — Индуктивность;
      C — Ёмкость;
      R — Сопротивление;

Конечно емкость и сопротивление могут замерять большинство современных мультиметров, но LCR-метры это делают обычно точнее, в большем диапазоне. Также RLC метры позволяют проводить дополнительные измерения, например добротности, коэффициента потерь, ESR (эквивалентного последовательного сопротивления, сокращенно ЭПС) и делать это на разных частотах.

Подобный функционал необходим там, где уже не хватает обычных мультиметров, например при диагностике неисправностей импульсных блоков питания, преобразователей напряжения, радиочастотных цепей.

Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей

Резисторы – самый распространенный вид радиокомпонентов

Проволочные резисторы отличающиеся по номинальной мощности

Если с распространенными номиналами проблем не возникает, то измерение низкоомных резисторов может добавить сложностей. Обычный мультиметр часто может измерить нормально сопротивление порядка 1-2 Ома и выше, если ниже, то начинает сильно влиять сопротивление проводов, щупов и низкое разрешение. Даже довольно точный UNI-T UT61E имеет дискретность измерения в таком режиме всего 10 мОм, при том что даже у недорого LCR-метра минимальная дискрета 0,1 мОм.

высокой точности с возможностью подключения к ПК для снятия логов

Соответственно если при помощи мультиметра можно относительно точно измерить резисторы с сопротивлением от 0,05-0,1 Ома, то при измерении 10 мОм он фактически ничего уже измерять не будет, для сравнения ниже измерение двух резисторов номиналом 1 и 2,2 мОм.

Часто измерение малых сопротивлений необходимо при проверке, подборе или изготовлении токоизмерительных шунтов. Альтернативный вариант измерения по падению напряжения, но необходим регулируемый блок питания, амперметр, вольтметр.

Возможность измерения малых сопротивлений также полезна для выявления таких проблем как неправильная маркировка, особенно низкоомных резисторов.

Слева резистор промаркированный как 0,1 Ома, справа как 0,22 Ома, но реально у них почти одно и то же сопротивление. Такие ошибки могут стоить иногда очень дорого.

Транзисторы

Измерение малых сопротивлений поможет в оценке оригинальности полевых транзисторов. Сейчас на рынок все чаще поступают поддельные, перемаркированные транзисторы. Хотя простое измерение сопротивления в открытом состоянии не дает полной информации, оно позволяет быстро понять что перед вами.

Для теста кроме измерителя надо иметь только батарейку на 9 вольт. Зачастую данные в даташитах приводятся к напряжению на затворе в 10 вольт, но в данном случае это не существенно. Кроме того корректно измерять сопротивление сток-исток под током, обычно он указан в документации, но это требует наличия как минимум лабораторного блока питания.

Чтобы проверить транзистор: подключаем тестовые щупы к выводам сток и исток (обычно средний и правый), подаем 9 вольт на крайние выводы. Постоянно подавать напряжение не требуется, достаточно зарядить затворную емкость, но надо быть внимательным, не подключите случайно батарейку к щупам тестера. Можно даже сначала «зарядить» транзистор, а только потом подключить щупы.

Конденсаторы

Конденсаторы используются немного реже, но имеют свои особенности. Например в отличие от резисторов они гораздо больше подвержены старению, особенно если речь идет об электролитических конденсаторах установленных в импульсных блоках питания, преобразователях материнских плат, т.п.

Особое значение имеет ESR конденсаторов. Когда конденсатор высыхает почти не теряя при этом емкость, у него значительно увеличивается внутреннее сопротивление.

Обычным мультиметром такое не диагностируется, можно менять всё подряд, но это не всегда удобно, часто сложно или дорого. Кроме того часто RLC измерители позволяет проводить измерения без выпаивания компонента, хотя, конечно это зависит от схемы включения.

Для примера сравнение двух конденсаторов, дешевого китайского и фирменного. Хоть точный, но обычный мультиметр считает их почти одинаковыми, показывая только небольшую разницу в емкости. Но если подключить конденсаторы к LCR-метру, то видно что отличие во внутреннем сопротивлении у них почти в 5 раз! Если планируете применять конденсаторы в импульсных блоках питания, то именно эта разница в сопротивлении скажется на нагреве, а соответственно и на сроке службы, характеристиках блока питания. Конденсаторы с большим внутренним сопротивлением не могут эффективно гасить выбросы.

Дроссели и катушки индуктивности

Дроссели, трансформаторы и вообще моточные узлы, в отличие от конденсаторов и резисторов проверяются еще сложнее, и редко какой мультиметр вообще способен измерять индуктивность.

Измеритель иммитанса облегчает производство моточных узлов, а также поиск межвиткового КЗ. Путем сравнения с исправным компонентом или известным значением можно понять, что трансформатор или дроссель неисправен, так как у него сильно изменится индуктивность.

Вообще для поиска короткозамкнутых витков существуют индикаторы, но измеритель иммитанса также определит эту проблему. Например слева исправный трансформатор, справа он же, но с одним накоротко замкнутым витком. Видно, что индуктивность обмотки стала существенно меньше, также виток повлиял и на результат измерения активного сопротивления обмотки.

Как итог, несколько рекомендаций перед выбором RLC измерителя:

Обзор особенностей, основных технических характеристик и возможностей измерителей LCR-параметров

Сравним несколько измерителей разной цены, оценим их преимущества, недостатки.

Транзистор тестер Маркуса с AVR микроконтроллером

Для начала конечно знаменитый транзистор тестер Маркуса. Он существует в различных вариантах: в корпусе и без, со встроенным частотомером, с проверкой стабилитронов, самодельный или фабричный. Иногда его ошибочно называют ESR-метром – это не совсем корректно, так как изначально это именно тестер транзисторов, а замер ESR – только одна из его функций, которая была добавлена значительно позже.

Читайте также:  Как сделать домик над колодцем своими руками

Кроме того, устройство имеет очень большое комьюнити на известном сайте vrtp.ru, где можно узнать как прошить транзистор тестер.

Транзистор тестер TC1 Транзистор тестер LCR-T4

Популярные транзистор тестеры EZM Electronics MK-168 и M8

Пожалуй, для новичка – это действительно выход: такой тестер умеет измерять очень много различных компонентов. Особенно удобно проверять транзисторы, например облегчить такую задачу как найти базу эмиттер коллектор транзистора. Он также вполне нормально проверяет конденсаторы с резисторами.

Но более важно то, что этот тестер умеет измерять емкость и индуктивность, причем проводить комплексное измерение. То есть, например, у дросселя показать не только индуктивность, а активное сопротивление обмотки, также у конденсаторов, не только емкость, но и внутреннее сопротивление.

Есть конечно недостатки, из-за простой схемотехники и двухпроводного подключения компонента ему сложно работать с малыми сопротивлениями.

LC метры

Следующим шагом идут устройства на шаг выше – LCR-метры. Они не умеют проверять параметры транзисторов, но индуктивность или малое сопротивление измерят лучше чем универсальный тестер. Типичный представитель — LC100-A компании Juntek.

В отличие от предыдущего прибора прошивка ESR тестера закрыта, потому возможность обновления отсутствует.

У таких измерителей, остался недостаток универсального прибора — двухпроводное подключение. Поэтому на результат измерений может сильно влиять качество контакта с компонентом и длина проводов. Калибровка ESR тестера, конечно решает проблему длины проводов, но лучше использовать провода минимальной длины и большого сечения.

LCR+ESR метры

Для более опытных есть прибор, который относят если не к профессиональным, то уж точно близким к ним — это XJW01. Кроме стандартных замеров, он позволяет проводить комплексные, а также измерять добротность, диэлектрические потери. Тестер имеет четырехпроводное подключение.

XJW01 позволяет проводить измерения на трех частотах: 100 Гц, 1 и 7.8кГц. Продается XJW01 в виде конструктора для сборки, или собранным устройством.

Тестер может работать как в автоматическом режиме выбора измеряемой величины, так и в ручном. Лучше использовать с ручным режимом, так как автоматика иногда неверно определяет тип компонента.

Наличие четырехпроводного подключения сразу ставит XJW01 на голову выше многих других любительских приборов: такое подключение позволяет разделить цепи генератора тока и измерительной части, за счет чего длина проводов и сопротивление контакта перестает влиять на результаты замеров.

Такой тип подключения применяется в профессиональных приборах: даже там где компонент подключается прямо в клеммы прибора, также используется специальная контактная группа, состоящая из четырех контактов.

Для подключения радиодеталей используются зажимы, пинцеты или выносные контактные группы, а так как они также используют разъемы BNC для подключения, то даже фирменные устройства совместимы с показанным выше XJW01.

Фактически все то же самое есть у фирменных, но относительно бюджетных LCR-метров от фирм UNI-T и Hantek. Они также имеют четырехпроводное подключение, измерение емкости, индуктивности и сопротивления включая ESR и комплексные измерения.

Особенно выделяется новая модель измерителя Hantek 1832C, с которой можно проводить измерения на семи вариантах частоты с верхним пределом в 40 кГц. Базовая погрешность до 0,3%, есть автоматический режим измерения, режимы комплексных измерений.

В этой серии есть старшая модель – Hantek 1833C, отличающаяся расширенным диапазоном частот, но имеющая большую цену.

Hantek 1832C имеет большой экран, на который выводится одновременно все результаты тестирования. Подключение тестируемого компонента двух и четырех проводное (трех и пяти с учетом защитного контакта).

Размах тестового сигнала составляет 0,6 вольта, из-за чего можно проводить замеры многих пассивных радиокомпонентов без выпаивания из платы.

Заявленные диапазоны измеряемых параметров:

При этом часто современные устройства могут измерять на частотах до 100 кГц (например Hantek 1833C), что позволяет тестировать компоненты на более высоком уровне. Особенно это помогает при отборе конденсаторов для работы в импульсных блоках питания, частота работы которых находится на сопоставимом значении.

Но нужно быть внимательным: у многих измерителей LCR часто декларируется диапазон частот до 100 кГц. Однако если внимательно прочитать инструкцию, то станет ясно, что в режиме измерения на такой частоте максимальная измеряемая емкость существенно ниже.

Сравнение и рейтинг измерителей импеданса: лучшие измерители RLC 2020 года — основные достоинства и недостатки

Чтобы выбрать оптимальный с точки зрения мастера по ремонту формат или тип прибора для измерения ESR проведем сравнение 3-х основных категорий:

Лучшие LCR-метры профессионального уровня
Цифровой измеритель LCR Hantek 1832C
Основные плюсы: точность измерения, частота до 40 кГц, прибор уже готов к использованию.
Минусы: цена

Высокоточный RLC метр XJW01
Основные плюсы: точность измерения, измерение индуктивности до 1000 Гн, цена.
Минусы: только три тестовые частоты с максимальной в 7,8 кГц, упрощенная индикация, необходимость доработки для автономного питания.
Лучший LCR-метр среднего класса
Измеритель LC100-A с щупами для SMD
Основные плюсы: простая конструкция, компактность, большой диапазон измерения, низкая цена.
Минусы: невысокая точность измерения, двухпроводная схема подключения компонента.
Лучшие бюджетные транзистор тестеры базового уровня
Тестер компонентов LCR-T4
Основные плюсы: очень высокая функциональность, кроме измерения LCR можно тестировать транзисторы, диоды, тиристоры и пр., возможность обновления прошивки, цена.
Минусы: не очень высокая точность измерение малых сопротивлений и ESR, двухпроводное подключение компонента, измерение на низкой частоте, невозможность измерения без выпаивания компонента.

Многофункциональный тестер элементов GM328 ESR

Из особенностей — измерение на частотах до 200 кГц, до 12 измерений в секунду, напряжение смещения внешнего конденсатора до 40 В.

Резюмируя все вышесказанное подчеркнем, что для начинающего радиолюбителя более чем достаточно обычного транзистор тестера, который перекроет 90% его задач. Опытным скорее всего потребуется измеритель посложнее, и здесь можно смотреть либо на готовые приборы от брендов среднего уровня, либо на конструкторы типа XJW01.

Тем, кто работает в организациях на которые распространяется сфера государственного регулирования обеспечения единства измерений, будут нужны приборы, числящиеся в госреестре, к которым можно заказать метрологическую поверку. Это также отличие профессиональных приборов от любительских, хотя и качественных.

Источник

Оцените статью