Усилитель мощностью 200 Вт на интегральной микросхеме TDA7293/TDA7294.
Схемы УНЧ на TDA7293 (TDA7294) с умощнённым выходом на полевых транзисторах.
Поговорили мы на странице ссылка на страницу о том, как выжать из TDA7293 максимальную мощность, порассуждали, вроде как даже и ложки отыскались — а осадок остался.
Соединять в параллель несколько микросхем, а потом колдовать, чтобы при включении они не отправились к праотцам. Как то не очень радует такой поворот событий, я бы даже сказал — вообще огорчает.
А поскольку пустячок огорчает не только меня, свои возражения поимел в жунале Радио №11, 2005 и господин Чивильча А., пос. Мостовой, Краснодарский край, дополнив микросхему двумя мощными биполярными транзисторами, работающими в режиме В.
Схема эта, хотя и получила широкое распространение в интернет сообществе — не сказать, что очень хороша. Отлично подойдёт разве что для раскачки матюгальника, установленного на крыше бронетранспортёра.
А что? Вещь нелишняя в современной действительности. Поколесит такое транспортное средство по Старушке Европе, поорёт сиплым голосом в сторону охреневших европейцев: » Путин — наш президент! «. Красота, однако.
Что не так с опубликованным изделием?
1. А то, что мощные выходные транзисторы, работающие в режиме В, даже при условии авторских ухищрений в виде низкоомного резистора, сильно подпортят весьма не плохие THD характеристики микросхемы, обогатив звучание усилителя малосимпатичными для уха биполярными гармоническими составляющими.
2. Отрицательная обратная связь, снимаемая с выхода TDA7293 в штатном режиме работы микросхемы, была зверски перекинута на выход транзиторного каскада, что не преминуло сказаться на устойчивости усилителя. Схема склонна к возбуду, как лбом не бейся ты о стенку!
«Если нет возможности заменить «неудачную» микросхему. » — успокаивает нас автор и предлагает перечень мер по устранению самовозбуждения.
Э нет, мил человек, так дело не пойдёт! «Неудачную» микросхему мы менять не станем, поменяем, пожалуй, сразу «неудачную» схему электрическую принципиальную.
Рис.1
Микросхема TDA7293 включена в полном соответствии с рекомендациями производителя.
В качестве нагрузки для неё служит комплементарная пара мощных, но недорогих полевых транзисторов, работающих в режиме АВ.
Напряжения на затворах полевых транзисторов фиксируются посредством стабилитронов D2, D3 с напряжением стабилизации 5,6В (может быть выбрано любым в пределах 5-12В при токе стабилизации — около 20мА) и регулируются посредством подстроечных резисторов R11-R12. Данные резисторы задают смещение на затворах полевых транзисторов и тем самым определяют выбранный ток покоя выходного каскада в пределах 200-250 мА.
В принципе, поменяв типовую схему включения (подключив минусовой вывода конденсатора С7 не к 12, а 14 выводу микросхемы), и снизив напряжение питания до ±40V, ничего не мешает нам произвести замену ИМС TDA7293 на TDA7294.
Некоторые китайские экземпляры TDA7293 не хотят устойчиво работать даже при условии включения в соответствии с datasheet-ом производителя и полном отсутствии нагрузки на выходе. Поэтому, при неимении какой-либо возможности проверить осциллографом форму сигнала на выходе, советую сразу подключить к 14 выводу микросхемы цепочку Цобеля, показанную на схеме синим цветом.
Выходная мощность усилителя, ограниченная коэффициентом нелинейных искажений 1%, при напряжении питания ±45V составляет:
200 Вт для Rн = 4 Ом,
120 Вт для Rн = 8 Ом.
Приведённые значения верны при условии запитывания усилителя стабилизированным источником питания с постоянным выходным напряжением, не зависящем от потребляемой мощности. Понятно, что при просадке питающего напряжения (на пиковых уровнях) снизится и максимальная выходная мощность агрегата (ватт до 160) — этот эффект характерен для любых типов усилителей.
В чём плюсы такого схемотехнического построения?
1. Микросхема работает в штатном режиме, мало того, за счёт отсутствия низкоомной нагрузки обладает лучшими характеристиками, по сравнению с цифирями, указанными в datasheet-е.
2. Мощные комплементарные полевые транзисторы Т1 и Т2 прекрасно сочетаются с не менее полевыми транзисторами внутри микросхемы, что в сравнении с биполярными аналогами, позволяет порадовать себя более мягким и комфортным звучанием.
3.Выходные транзисторы включены по схеме истоковых повторителей, которые представляют собой каскады, охваченные 100% обратной связью (как по переменному, так и по постоянному току) и вполне успешно справляются с функцией стабилизации выходного напряжения при умеренном коэффициенте нелинейных искажений.
Теперь, что касается настройки схемы.
Для желающих сберечь время и финансовые накопления на приобретении умерших выходных транзисторов, дам простой, понятный и нравоучительный совет: «Торопиться не надо! ».
И прежде всего, не надо торопиться подпаивать транзисторы! Кстати, плавкие предохранители в цепях питания в большинстве случаев также помогут избежать летального исхода у полевиков.
Для начала установите подстроечные резисторы в положение, соответствующее минимальным значениям напряжений, подаваемых на затворы транзисторов.
Для схемы, приведённой на Рис.1, эти значения будут равны — 0 Вольт.
Ввиду высоких значений крутизны применяемых транзисторов, очень желательно, чтобы эти подстроечники были многооборотными.
Установили? Не почтите за труд, потыкаться измерительным прибором в указанные точки и проверить получившиеся напряжения.
Теперь можно подпаять транзисторы и приступить к магическому ритуалу настройки схемы.
Включаем амперметр между плюсом питания и стоком верхнего транзистора. Замыкаем выход усилителя на землю. Страшно? Да ничего страшного — транзисторы закрыты.
Аккуратно крутим верхний подстроечник до момента достижения показания прибора — 200 мА. Весь ток верхнего транзистора замыкается на землю, больше ему течь некуда, так как нижний транзистор закрыт.
Теперь рамыкаем выход от земли, подключаем туда вольтметр и крутим второй подстроечник, постепенно приоткрывая нижний транзистор до тех пор, пока показания прибора не покажут нулевое значение.
Казалось бы, ничем не примечательная история. Но на этом — всё!
А куда деваться любителям шибануть по рогам децибелом, маньяков самой мощной мощности в мире? Им 200Вт, как ни крути — как слону дробина.
Но об этом мы поговорим на следующей странице.
Источник
Автомобильный усилитель НЧ на TDA7293
На днях, решил собрать другу в автомобиль усилитель НЧ на TDA7293. Предназначался усилитель для раскачки одной выносной колонки мощностью в 100 Вт, которая должна подключаться при выезде на природу.
Изначально хотелось собрать на TDA7294, но это было бы не интересно, так как на этом интегральном усилителе, схему я уже собирал. Поэтому решил собрать на TDA7293. Кстати схемы у этих двух микросхем почти одинаковы, есть одно отличие, но об этом чуть ниже.
Сходство двух микросхем, позволило мне подкорректировать старую печатную плату, отказавшись от новой разводки, что позволило сэкономить время.
Корпус использовал от какого-то советского блока.
Основные характеристики TDA7293
- Напряжение питания ±12 ? ±50 Вольт;
- выходная мощность 140Вт (Vs= ±45В,Rн=8 Ом,THD=10%);
- выходная мощность 110Вт (Vs= ±30В,Rн=4 Ом,THD=10%);
- пиковый выходной ток до 10Ампер;
- температура кристалла до 150 градусов Цельсия;
- коэффициент усиления 26?40.
Более подробные характеристики и графики вы сможете найти в даташите на TDA7293.
Схема усилителя на TDA7293
Если сравнить со схемой TDA7294, то можно заметить, что отличие их, лишь в подключении конденсатора С5. В нашем случае электролит С5 подключен между 6 и 12 ногами, а в схеме на 7294, электролит С5 подключен между 6 и 14 ногами.
Элементная база.
Все номиналы элементов указаны на схеме. Неполярные конденсаторы- керамические, резисторы мощностью 0.25 Вт.
Саму же TDA7293 необходимо через диэлектрическую прокладку (в моем случае из силикона) и теплопроводную пасту установить на радиатор. Площадь радиатора не менее 500 кв.см. В отверстие микросхемы также установить изолирующую втулку, чтобы не было контакта микросхемы с радиатором через болт.
Режим STAND-BY и режим MUTE TDA7293.
Как работают два этих режима, подробно расписано в статье “Усилитель НЧ на TDA7294”.
Если сказать в двух словах, чтобы выйти из бесшумного или спящего режима, то необходимо крайние выводы резисторов R4 и R5 соединить с положительным выводом питания. Если нужно войти в эти режимы, то крайние выводы резисторов соединяем с общим выводом питания – GND. Ничего сложного.
Печатная плата.
Под статьей лежит архив с двумя печатными платами для усилителя НЧ на TDA7293. Одна плата адаптирована под клеммы. Также в ней присутствуют выводы Stand-by и Mute, которые позволяют вывести эти два режима на внешние переключатели. Вторая плата не адаптирована под клеммы и имеет меньшие размеры. Последнюю плату я использовал в своем усилителе. В ней нет выводов режимов Stand-by и Mute, они в плате уже соединены с плюсом питания. Сделано это для того, чтобы подать питание на усилитель и он уже поет, без лишних заморочек.
Питание усилителя на TDA7293.
Питание необходимо двухполярное. Если вы собираетесь делать усилитель для автомобиля как у меня, то нужно собирать повышающий преобразователь, читайте статью «Автомобильный преобразователь на TL494 для усилителя НЧ«. Если усилитель будет звучать дома или там, где есть напряжение переменного тока 200В, то нужно собирать понижающий преобразователь, читайте статью “Импульсный источник питания для TDA7294 на IR2153” или статью “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт”.
Печатная плата усилителя на TDA7293 СКАЧАТЬ
Источник
200 Ватт на TDA7293
Предлагаемая схема предназначена для «умощнения» интегральных усилителей мощности на микросхемах TDA7293 и TDA7294 с помощью нескольких внешних компонентов. Отличительная особенность предлагаемой схемы – простота и отсутствие наладки.
Многие из собиравших усилители на микросхемах TDA7293 и TDA7294 столкнулись с тем, что реальная микросхема не держит заявленную в Datasheet мощность. Одна из возможных причин – некачественные китайские микросхемы. Впрочем – на высокоомную нагрузку они обычно работают неплохо, из чего можно сделать вывод, что кристалл под нагрузкой просто перегревается, а хваленая тепловая защита (как и защита от короткого замыкания) работает тоже «по-китайски»: не защищает ни от чего. Внимательное изучение микросхемы приводит к тем же выводам – вызывает большое сомнение способность этого корпуса отвести от кристалла более 40-50w. Ну разве что охлаждать его жидким азотом.
Защита от КЗ там тоже специфична – при работе на комплексную нагрузку (реальный сабовый динамик) пиковые токи даже при половинной мощности превышают порог срабатывания защиты, что вызывает противный треск в звуке… При этом (печальный опыт, увы) – спустя пару минут микросхема все равно превращается в облако дыма, не смотря на все усилия внутренней схемы защиты…
А сама идея TDA7293 и TDA7294 весьма привлекательна – малогабаритный модуль мощностью 100-130 Вт с весьма приличным звуком (не хай-энд, но вполне хай-фай…). Это и усилитель для домашнего сабвуфера, и усилитель гибридного гитарного аппарата, да и для озвучивания небольших помещений достаточно 2-3 таких модуля с соответствующими колонками… Жаль только, что оно не работает, как обещает документация производителя…
Мысль использовать TDA7293 в качестве предварительного усилителя с внешним выходным каскадом была совершенно банальна и очевидна, и даже отражена в документации на микросхему. Предлагаемое производителем решение назвать простым можно с некоторой натяжкой, а главное – оно только понижает рассеиваемую микросхемой мощность, но не увеличивает отдаваемый в нагрузку ток…
Потому – было решено сделать «умощнение» по-другому, и, естественно, как можно проще. Отмечу сразу — это решение не в аудиофильском стиле «только лампы и обязательно в классе «А»»… Специально измерение искажений не проводились, но видимых на экране и явно слышимых невооруженным ухом искажений схема не имеет, тем более что изначально схема предназначалось для работы с сабвуфером.
Входная часть — практически типовое включение TDA7293. Слегка изменена схема формирования управляющих напряжений на 9/10 выводах микросхемы для простоты. Обращу внимание на раздельные «земли» входных цепей и электролитов питания и нагрузки! Если усилитель у вас одноканальный с отдельным питанием и сигнал подается прямо на вход TDA7293, тогда земли можно не разделять (как это и сделано на большинстве печатных плат, предлагаемых в комплекте с TDA7293). А вот если от одного источника питается несколько каналов, да еще сигнал поступает от какого-нибудь кроссовера, «земля» питания которого тоже прицеплена к «земле» усилителя мощности, вот тогда и возникают вопросы типа: «Чего ж оно фонит? Я же все заэкранировал!» Дорожку на печатке нужно разрезать, и прямо на разрез можно припаять SMD резистор ом на 100. Этого можно и не делать, но тогда есть шанс забыть при отладке подать «землю сигнальную» и все спалить. Землю сигнальную нужно протянуть отдельным проводом (можно использовать экран экранированного провода) от источника сигнала. Поскольку внешний выходной каскад работает в классе B, для устранения «ступеньки» в выходном сигнале резистор R8 выбран относительно низкоомным (0,75 Ом), и в диапазоне выходного тока до 1 A преимущественно работает высоколинейная TDA7293. Когда выходной ток усилителя увеличивается примерно до 1 A, плавно открывается выходной транзистор и выходной ток TDA7293 ограничивается суммой тока базы выходного транзистора и 1 A через R8. Уменьшать значение R8 далее не следует — линейность это заметно не повысит, а мощность, рассеиваемая TDA7293, возрастет. Конденсатор С9 устраняет ВЧ возбуждение и дополнительно уменьшает переключательные искажения выходного каскада (точнее – он позволяет ВЧ составляющим с выхода TDA7293 поступать непосредственно в нагрузку, что довольно эффективно компенсирует «ступеньку» выходной пары внешних транзисторов). В первом варианте была использована одна пара выходных транзисторов, при этом мощность на резистивном эквиваленте нагрузки 4 ома получилась 200 w синуса при питании +/-55 v на холостом ходу. Под нагрузкой питание садилось примерно до 48 v (питание осуществлялось трансформатором ТС-360 с перемотанной вторичной обмоткой, емкости фильтра – по 15000 мкФ). Поскольку реальная нагрузка носит комплексный характер, для повышения надежности была добавлена вторая пара транзисторов и резисторы R9 и R10 для выравнивания токов между парами (если необходима мощность менее 200 Вт, вполне можно ограничиться одной парой выходных транзисторов. В таком случае резисторы R9 и R10 можно исключить). Цепь обратной связи подключена к эмиттерам VT1,VT2. Это увеличивает выходное сопротивление усилителя на 0,08 ома и, на мой взгляд, дефектом не является. Если же обратную связь подключить к нагрузке, выходной ток TDA7293 не будет ограничиваться на уровне 1 А, а будет продолжать расти, хотя и медленно.
Рекомендую акустику подключать через реле со схемой задержки подключения и защиты от постоянного напряжения на выходе — выходной каскад защиты от КЗ не имеет и в случае любых катаклизмов есть приличный шанс повредить акустику. Кроме того, у меня на свободной контактной группе этого же реле собран ограничитель тока силового трансформатора при включении (в цепь питания трансформатора 220В включен проволочный резистор на 100 Ом мощностью 10 Вт, замыкаемый свободными контактами реле) — крайне полезная штука при мощностях более 100 w. Полезность такого решения – в плавном нарастании напряжения питания усилителя при включении, а главное – в ограничении тока от сети в момент включения. Дальнейшее повышение мощности вполне возможно: допустимое питание для TDA7293 составляет +/-60 v, количество выходных транзисторов может быть, соответственно, увеличено.
Все, что говорилось о TDA7293, в полной мере относится и к TDA7294 – с учетом более низкого предельного напряжения питания и иной схемы подключения конденсатора вольтодобавки. Мой опыт показывает несколько большую надежность TDA7294, но возможно это следствие распространившихся в последнее время низкокачественных TDA7293 китайского производства… Еще одно отличие TDA7294 от TDA7293 состоит в том, что у TDA7294 не работает внутренняя схема детектора перегрузки, а у TDA7293 она вполне работоспособна и позволяет индицировать как перегрузку по току, так и клиппинг по напряжению – достаточно прицепить к 5 выводу микросхемы светодиод с токоограничивающим резистором, что довольно удобно.
Предложенное решение – внешний выходной каскад – не требует настройки, если собрано из исправных компонентов, ибо ток покоя у выходных транзисторов равен 0. Серьезным недостатком предложенной схемы является отсутствие защиты от короткого замыкания в нагрузке – при подключенном внешнем выходном каскаде встроенная схема не работает (справедливости ради следует отметить, что и встроенная схема в рекомендованном включении у меня ни разу не спасла микросхему от выгорания…). Впрочем, если предложенный усилитель встраивается, например, в сабвуфер, ввиду отсутствия внешних соединений с акустикой вероятность короткого замыкания ничтожно мала, и на этот недостаток можно закрыть глаза…
Существует возможность еще уменьшить рассеиваемую TDA7293 мощность – увеличить R8, но при этом неизбежно увеличатся и искажения, вносимые выходным каскадом (полагаю, для использования с сабвуфером – это вполне допустимо, тем более, что на низких частотах ООС микросхемы довольно эффективно их компенсирует).
Конструктивно удобно выполнять монтаж всего узла прямо на радиаторе – микросхема с платой крепится в непосредственной близости от пары выходных транзисторов (через слюдяные прокладки и с помощью теплопроводной пасты, естественно), все элементы, кроме R8 и С9 находятся на плате микросхемы, а
R8 и С9 удобно припаять непосредственно к выводам транзисторов.
Вот так выглядел макет варианта с одной выходной парой транзисторов:
Возможно – подобное решение уже предлагалось ранее – «патентный» поиск я не проводил.
Источник