- Как работает безлопастной вентилятор?
- Конструкция и принцип действия
- Как работает вентилятор?
- Плюсы и минусы
- Обзор моделей на рынке
- Возможно ли сделать безлопастной вентилятор своими руками
- Принцип работы безлопастного вентилятора, как сделать своими руками недорогую модель
- Шаг 1: Необходимые материалы и оборудование
- Шаг 2: Принцип работы
- Шаг 3: Изготовление
- Шаг 4: Внутренний воздуховод и основание
- Шаг 5: Впускное отверстие для воздуха
- Шаг 6: Кольцо воздуховода
- Шаг 7: Покраска
- Шаг 8: Полоска светодиодов
- Шаг 9: Склеивание всех частей
- Шаг 10: Установка вентилятора
- Шаг 11: Входные отверстия для воздуха
- Шаг 12: Модуль управления скоростью
- Шаг 13: Дно основания
- Шаг 14: Конечный результат
Как работает безлопастной вентилятор?
В последнее время в рунете периодически появляется реклама безопасного безлопастного вентилятора, предлагаем рассмотреть устройство этого климатического прибора для дома и принцип его действия. Мы также расскажем о сильных и слабых сторонах этого аппарата и основных характеристиках. После чего проведем краткий обзор нескольких моделей безлопастных вентиляторов, а в завершении статьи рассмотрим возможность создания своими руками такого необычного устройства.
Конструкция и принцип действия
В 2009 году Дж. Дайсон представил миру собственную разработку вентилятора. Особенность конструкции заключалась в отсутствии лопастей, что, тем не менее, не мешало устройству создавать устойчивый воздушный поток. Причем, объем воздуха на выходе превышал на один-два порядка, поступающий на турбину. Думаете магия? Нет, все значительно серьезней – аэродинамика.
Все дело в профиле кольца, ему придана специальная форма.
Профиль кольца безлопастного вентилятора
Благодаря этому выходящий из отверстий воздух фокусируется таким образом, чтобы перед кольцом образовалась зона низкого давления (выделена красным овалом на рис. 3).
Рис. 3. Аэродинамическое моделирование работы Воздушного Умножителя Дайсона
Поскольку такая область спереди и по бокам окружена повышенным давлением, воздух втягивается с тыльной стороны кольца, образуя устойчивый направленный поток.
Заметим, что на составление математической модели профиля, позволяющего добиться максимального эффекта и доработку технологии, у Дайсона ушло около четырех лет. Большинство китайских аналогов его устройства не могут выдать даже половинной мощности оригинального аппарата. Изобретатель запатентовал конструкцию, в частности, профиль кольца и строение турбины, нагнетающей воздух, поэтому для изготовления полноценных копий необходимо приобрести у автора права на производство.
Как работает вентилятор?
Поскольку чертеж устройства находится под защитой авторских прав, расскажем о работе вентилятора, опираясь на рисунки, используемые в рекламе этого продукта.
Как устроен безлопастной вентилятор
Пояснение к рисунку:
- А – отверстия для поступления воздуха к турбине.
- В – двигатель турбины.
- С – воздушные потоки внутри кольца.
- D – кольцо.
При включении турбина начинает нагнетать воздух внутрь кольца, откуда выходит под давлением в небольшую щель (А на рис. 5) или маленькие сопла.
Рис. 5. А — Щель для выхода воздуха; B – двигатель для вращения кольца
Некоторые модели (например, Flextron FB1009, KITFORT KT-401, HJ-007, Bork) имеют встроенный двигатель (В рис. 5), позволяющий менять направление кольца, а, следовательно, и воздушного потока. Часть производителей предусмотрела возможность установки в конструкцию специального аэрозоля, в результате Аirmultiplier Dyson (именно так назвал свое детище Дайсон) дополнительно выступает в роли освежителя воздуха (часть модельного ряда Kitfort, Supra,Renova, Vesson).
Встречаются безлопастные вентиляторы с охлаждением и нагревом воздуха, такие бытовые приборы вполне можно отнести к разряду полноценной климатической техники.
Оригинальные устройства выпускаются с силовой установкой (турбиной) мощностью 25 или 40 Вт. У китайских аналогов этот параметр может варьироваться в широком диапазоне. Такой небольшой мощности вполне достаточно для того, чтобы через кольцо проходило до 500 литров воздуха в секунду (опять же, это значение касается оригинальных изделий).
Плюсы и минусы
Рассмотрев строение умножителей воздуха, можно перейти к анализу их преимуществ и недостатков. Начнем с первого. Преимущества:
- Безусловно, это безопасность. Отсутствие лопастей позволяет безнаказанно засунуть пальцы в рабочую зону функционирующего прибора, это особенно оценят те, у кого есть маленькие дети.
- Теперь, чтобы удалить пыль достаточно провести тряпкой, нет необходимости разбирать бытовой прибор.
Безопасность и простота обслуживания это только часть преимуществ Умножителя Воздуха Дайсона
- В конструкции двигателя турбины используются неодимовые магниты, что дало возможность минимизировать силовую установку и сделать ее относительно бесшумной.
- Экономия электроэнергии, максимальная мощность прибора 40 Вт, но в таком режиме устройство редко используется, поэтому штатная работа происходит на уровне 15-20 Вт.
- Привлекательный дизайн, который отлично впишется в современный интерьер.
- Плавное управление силой и направлением воздушного потока.
К сожалению, у данного устройства есть и недостатки, которые существенно отражаются на покупательском спросе:
- Высокая стоимость оригинальных моделей, она может доходить до 20 тыс. рублей и более, что сопоставимо с покупкой и установкой недорогой сплит системы. Впрочем, с такой ценой можно смириться, если безлопастной вентилятор обладает функциями нагрева и охлаждения воздуха. Заметим, что китайские аналоги стоят существенно дешевле, некоторые даже на порядок, но, как уже было описано выше, у них меньшая эффективность.
- Несмотря, на то, что силовая установка вентилятора малошумная, в процессе работы этот прибор издает характерный гул, напоминающий работу турбины самолета. Причем, на максимальной мощности уровень шума может достигать 60 децибел, что довольно много, поскольку достаточно часа, чтобы от этого разболелась голова. Правда, в таком режиме устройство создает настолько сильный поток воздуха, что возникают дискомфортные ощущения, поэтому максимальный уровень работы практически не используется. В штатном режиме аппарат шумит значительно меньше.
- Заявленное в рекламе 15-ти кратное увеличение потока технически верное, но есть определенный нюанс. Это величина характерна для максимального режима, который практически не используется.
Обзор моделей на рынке
Приведем в качестве примера несколько моделей устройств, доступных на российском рынке.
Bladeless Fan, маленький недорогой настольный вентилятор безлопастного типа. Произведен в Китае. Стоимость порядка $40-$50. Минимум функций, небольшая мощность (12 Вт) позволяют получить воздушный поток, вполне приемлемый для настольных устройств.
Относительно недорогой китаец Bladeeless Fan
Еще один бюджетный вариант с минимальным функциональным набором — Fan Leader, если верить поставщикам, польского производства. Также в настольном исполнении, в том же ценовом диапазоне, но несколько большей мощности – 35 Вт. Характерная особенность – рабочая зона выполнена в форме овала. Заметим, такая форма встречается у многих моделей, например, Орион OR-DSO2.
Fan Leader
Ну и для сравнения рассмотрим оригинальную конструкцию — модель Dayson Hot + Cool. Данный прибор выпускается в напольном исполнении. Он обладает функцией нагрева воздуха. Мощность турбины – 40 Вт, в режиме обогревателя – 2 кВт. Имеется пульт дистанционного управления, информационное табло, указывающее выбранный режим и заданную температуру. За все это удовольствие потребуется заплатить около 500 – 540 долларов.
Прекрасный образец оригинальной продукции Dayson Hot + Cool
Заканчивая тему обзора, приведем сравнительную таблицу модельного ряда Dynson и китайского аналога Unico ION.
Наименование | Dyson AM-01 | Dyson AM-02 | Dyson AM-03 | Dyson AM-04 | Unico ION |
Ориентировочная Стоимость, $ | 260 | 310 | 340 | 345 | 50 |
Функциональность | охлаждение | охлаждение | охлаждение | охлаждение/нагрев | охлаждение |
Скорость воздушного потока (max), л/с | 450 | 600 | 700 | 130 | 450 |
исполнение | настольное | Напольное | Напольное | Напольное | Настольное |
Ручная регулировка угла наклона | + | — | + | + | + |
Ручная установка высоты | — | — | + | — | — |
Автоматические повороты на 90° | + | + | + | + | + |
Плавная регулировка скорости потока | + | + | + | + | + |
Уровень шума (max), дБ | 64,5 | 63,0 | 65,0 | 64,0 | 60,0 |
Потребляемая мощность (max), Вт | 40 | 65 | 65 | 2000 | 35 |
Габариты упаковки, мм | 547х356х152 | 1007х190х110 | 1480х450х280 | 579х200х153 | 580х330х180 |
Вес (брутто), кг | 1,80 | 3,35 | 4,30 | 2,47 | 2,50 |
Возможно ли сделать безлопастной вентилятор своими руками
В рунете есть несколько видеороликов, посвященных этой теме, где для создания кольца используются различные материалы, начиная от пластиковых ведер и заканчивая канализационными трубами ПВХ. Силовые установки также разнообразны, в основном это мощные кулера от процессоров, но встречаются оригиналы, использующие двигатель пылесоса. Эффективность таких конструкций и их характеристики вызывают большие сомнения, тем более никаких замеров не приводится.
Как вы помните, для создания зоны низкого давления необходимо сфокусировать потоки воздуха особым образом. Используя обычный подручный материал, сделать это довольно непросто, а работа ради работы не несет в себе рационального смысла.
Источник
Принцип работы безлопастного вентилятора, как сделать своими руками недорогую модель
В тот день, когда я узнал о принципе работы безлопастного вентилятора, я был поражен тем, какая простая и крутая идея стоит за этим устройством.
В тот же день я решил соорудить один для моего племянника, чтобы он не поранился, прохлаждаясь в жаркие летние дни.
Итак, в этой инструкции я собираюсь собрать безлопастной вентилятор своими руками, используя обычные материалы, такие как пара ПВХ трубок, пластиковая чашка и пара листов фибергласа. Самой крутой особенностью этого вентилятора, в отличии от остальных самодельных безлопастных вентиляторов, является то, что я собираюсь сделать этот проект доступным каждому, без нужды печатать какие-либо его части на 3Д принтере. Это также делает проект очень дешевым — не более $10.
Шаг 1: Необходимые материалы и оборудование
Приспособления и материалы для этого проекта легко найти. Нам нужна пара ПВХ трубок на 6,5 и 3,5 дюйма в диаметре, пластиковая чаша, лист фибергласа толщиной 3мм и т.д.
Не надо ничего печатать на 3Д принтере, как это обычно бывает необходимо в других проектах подобного рода. Более того, для большинства распилов я использовал торцовочную пилу, так как она сделала работу более точной и простой, но всё то же самое можно сделать с помощью обычной ножовки и терпения… поэтому для более аккуратного вида вам потребуются более дорогие приспособления.
Шаг 2: Принцип работы
В отличие от своего имени, которое подразумевает, что девайс будет безлопастным, эта штука на самом деле имеет высокоскоростные лопасти внутри своего корпуса.
Кроме того, безлопастной вентилятор обеспечивает скрытую работу лопастей, а создаваемый поток воздуха направляется через замкнутое тело с каналами, которое воспроизводит обычную структуру вентилятора, но без присутствия лопастей. Этот дизайн обеспечивает отличный уровень защиты для детей.
Шаг 3: Изготовление
Вначале я собрался изготовить основное тело вентилятора и для этого я использовал трубку ПВХ.
Основная выходная труба изготовлена из ПВХ диаметром 150 мм, он отрезана в ширину на 100мм, образуя наружный корпус воздуховода.
Чтобы сформировать воздушный карман внутри основного воздуховода, я использовал чашу конической формы, которая идеально подошла к 150мм трубке ПВХ, так как её ободок превосходно прижался к ободу трубки. Я отрезал дно чашки примерно на 25мм в высоту и таким образом получил неплохой конический хомут внутри главного воздуховода, который позволяет воздуху равномерно вращаться внутри воздуховода, прежде чем он покидает его.
Шаг 4: Внутренний воздуховод и основание
Внутренний воротник для воздуховода изготавливается из 125 мм ПВХ-трубки. Эта трубка формирует узкое отверстие примерно 13 мм шириной для равномерного распространения воздуха из полости/воздуховода. Три части, а именно внешняя 150мм дюймовая ПВХ-трубка, конический внутренний корпус из пластиковой чашки и внутренний воротник из 125мм дюймовой ПВХ-трубки, вместе формируют корпус для выхода воздуха.
Чтобы сформировать основание, я использовал 90 мм ПВХ-трубку, отрезанную в высоту на 100 мм. Чтобы основание идеально прилегало к корпусу воздуховода, я сделал один срез трубки изогнутой формы. Эту форму я получил при помощи изоленты, контуром служила 150мм ПВХ-трубка.
Шаг 5: Впускное отверстие для воздуха
Перед тем, как приклеить основание к основному корпусу, я просверлил трёхдюймовое отверстие в шестидюймовой трубке, оно будет действовать как коридор для воздуха, проходящего в основной корпус и воздуховод. Дырка сверлится дрелью с насадкой для сверления дырок.
Затем основание приклеивается к внешней части воздуховода с помощью суперклея. Если вы идеально подогнали основание к 150 мм трубке, то суперклей создаст очень прочное соединение между ними.
Шаг 6: Кольцо воздуховода
Кольцо для воздуховода делается из фибергласа толщиной 3мм, которое также служит соединением между внутренней половиной и внешней половиной основного воздуховода.
Шаг 7: Покраска
Так как основная часть корпуса готова, я решил покрасить её, чтобы придать ей приятный и опрятный вид. Я покрасил всё белым, используя аэрозольную краску, оставив неокрашенным только фиберглас, который был защищён от покраски изолентой.
Конечный результат оказался хорош, и синий лист фибергласа смотрелся фантастически на безупречно белой поверхности.
Шаг 8: Полоска светодиодов
Чтобы дизайн был более привлекательным и элегантным, я добавил 12вольтную полоску светодиодов на внутреннюю часть воздуховода в той половине, где фиберглас будет склеен с внутренним воротником воздуховода. Светодиодная полоска отрезается нужной длины. На задней её части есть липкая полоса, оторвав защитную плёнку, приклеиваем светодиодную полосу к поверхности ПВХ.
Таким образом, когда я включаю вентилятор, светодиодная полоса начинает освещать заднюю часть воздуховода и это создает очень крутой эффект распространения синего свечения, если смотреть спереди.
Шаг 9: Склеивание всех частей
Когда краска высохла, я приступил к склейке всех частей вместе, чтобы сформировать основное тело нашего безлопастного вентилятора, используя суперклей, который, как мне кажется, скреплял все накрепко.
Шаг 10: Установка вентилятора
Итак, в каждом безлопастном вентиляторе есть вентилятор с лопастями 🙂
Чтобы наш безлопастной вентилятор заработал, я использовал высокоскоростной вентилятор 12V DC, который я обнаружил в своих старых компьютерных завалах. Более того, это был серверный вентилятор, что означает, что он более мощный, чем обычный компьютерный вентилятор. Так что я очень советую вам использовать вентиляторы такого типа.
Вентилятор устанавливается внутрь основания, прямо снизу от воздуховодного корпуса при помощи четырех винтов для дерева, что позволяет крепко закрепить его на месте. Он устанавливается таким образом, чтобы тянуть воздух вверх и, поэтому нам нужен вентилятор, у которого будет достаточно силы.
Шаг 11: Входные отверстия для воздуха
Пара входных отверстий сверлится прямо под вентилятором по обеим сторонам трубки-основания. Эти входные отверстия дадут возможность воздуху засасываться в основание.
Чтобы уберечь любопытных от повреждения конечностей, я приклеил металлические сеточки на оба входных отверстия. Сетки сперва были окрашены в матовый черный цвет и затем закреплены при помощи горячего клея.
Шаг 12: Модуль управления скоростью
Так как проект подходил к завершению, я решил добавить в него ШИМ-модуль управления скоростью, чтобы можно было регулировать количество воздуха, выходящего из вентилятора, а также уровень издаваемой им громкости.
Чтобы осуществить свою идею, я спроектировал простую схему ШИМ-модуля управления скоростью, а также соответственно печатную плату в Автокаде.
Схема работает на базовых принципах. Она использует интегральную схему-таймер 555, которая в течение каждой секунды несколько раз переключает транзистор, а скорость переключения зависит от сопротивления, создаваемого потенциометром. Таким образом, поворачивая ручку переключателя, мы можем регулировать импульс и тем самым контролировать скорость вентилятора.
Я прилагаю все данные, включая схему, спецификацию и файлы формата Гербер для схемы ШИМ, которые могут потребоваться для заказа платы через интернет на веб-сайте.
Кроме того, обратите внимание на ребят JLCPCB, поскольку они делают отличное предложение для первого заказа, вы можете заказать 10 печатных плат, включая бесплатную доставку при заказе всего от 2 долларов США.
После пайки всех компонентов на печатной плате я соединил её с потенциометром, ручка которого выглядывала с лицевой части основания вентилятора, и была оснащена кнопкой для регулирования скорости вентилятора.
Шаг 13: Дно основания
Чтобы завершить проект, я приклеил плату к основанию горячим клеем. Затем я вырезал лист фибергласа и прикрутил его к основанию снизу, точнее к двум деревянным брусочкам, которые я сперва приклеил внутрь основания.
Чтобы вентилятор не скользил туда-сюда во время работы, я приклеил к дну 4 резиновых кнопки.
Вентилятор готов к работе…
Шаг 14: Конечный результат
Проект прошел потрясающе. В начале у меня стояла непростая задача о создании подходящего корпуса без использования 3Д-принтера, но по мере продвижения всё стало идеально сходиться вместе, и, конечно же, та пластиковая чашка идеально подошла к моим нуждам.
Финальный результат очень крут, учитывая тот факт, что использовались очень ограниченные приспособления и общедоступное оборудование, я достиг почти совершенного результата…. Да, самодельный безлопастной вентилятор…
А до тех пор, развлекайтесь, создавая и изучая клёвые самодельные штуки.
С наилучшими пожеланиями, Король DIY.
Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
Источник