Вертикальный диполь 145 мгц своими руками

Вертикальный диполь 145 мгц своими руками

Диполь из коаксиального кабеля, питаемого с конца (такая антенна в англоязычной литературе называется resonant feedline dipole) показана на рис. 1:
Рис. 1.

Идея состоит в том, что правая (по рисунку )половина антенны выполняется из центральной жилы коаксиального кабеля, а левая половина – из его оплетки. Точнее говоря – из внешней стороны оплетки, т.к. из-за скин-эффекта на ВЧ ток не проникает внутрь металла всего на микрометры. Поэтому внутрь металла оплетки ВЧ ток вообще не проникает, что эквивалентно изолятору. Следовательно, по внутренней и внешней стороне оплетки текут совершенно разные токи.

В данной конструкции по ток по внутренней сторона оплетки это обычный ток коаксиального кабеля, питающий антенну. А по внешней стороне оплетке течет излучающий антенный ток. Но длина половинки диполя должна быть равна λ/4. Поэтому отступив столько от точки питания мы должны прервать путь току внешней стороны оплетки. Проще всего это сделать фильтром-пробкой, т.е. параллельным LC-контуром, сопротивление которого на резонансе велико.

Но делать контур с отдельным конденсатором очень неудобно (надо нарушать внешнюю изоляцию кабеля). Экспериментально выяснил, что трехвитковая однослойная катушка из кабеля RG58A, намотанная на каркасе 40 мм диаметром имеет собственный резонанс на 145 МГц. Если захотите повторить измерения самостоятельно, то имейте в виду, что для них кусок кабеля придется испортить, т.к. измерять надо катушку без выводов:
Рис. 2.

Но можно измерений не делать, а сразу приступить к изготовлению диполя на 145 МГц. Возьмите кусок RG58A длиной на

1,5 м больше, чем расстояние от радиостанции до места установки антенны. Отступив

48 см (остальное дотянет влияние внутренней изоляции) от края аккуратно снимите внешнюю изоляцию вместе с оплеткой. Это будет точка питания диполя:
Рис. 3.

Отступив от этой точки еще

48 см (учитывается влияние внешней изоляции и трапа) намотайте 3 витка виток к витку на временной оправке диаметром 40 мм. Затем аккуратно удалите оправку и скрепите сделанный трап несколькими кабельными стяжками:
Рис. 4.

Антенна готова. Подключив свободный конец кабеля к анализатору увидим такую картину:
Рис. 5.

Если частота резонанса не попала куда надо, то:

Если она ниже, то чуть подрезаем половинку диполя из центральной жилы.

Если выше, то перегоняя витки слегка отодвигаем трап влево.

Если антенна используется как постоянная и внешняя, то на точку питания (место где кончается внешняя изоляция кабеля) имеет смысл надеть термоусаживающуюся трубку, а дальний конец антенны обмакнуть в какой-нибудь герметик.

Антенна, конечно, небогатая. Диполь – диполем. Но затраты средств и времени на ее изготовление совсем малы. Что может оказаться ценным в ситуации, когда внешнюю антенну надо изготовить за несколько минут и из минимума подручных материалов. Во всяком случае, меня в аналогичной ситуации такое решение выручило.

Источник

Вертикальный диполь 145 мгц своими руками

Мне понадобилась простая антенна, с хорошими характеристиками для работы на 145МГц из дома, когда нет возможности установить антенну на крыше, из автомобиля на стоянке, в походе. Перебрав разные конструкции, я остановился на двух элементной антенне. Несмотря на простоту (я бы даже сказал: банальность) конструкции, у неё много приемуществ, а простота изготовления, позволяет назвать её ‘конструкцией выходного дня’.

На фотографиях вы видите, как эта антенна установлена у меня на балконе. Конструкция получилась крепкой, дождь и сильный ветер ей не страшны. До этого, на балконе стояло несколько разных антенн: зигзаг без рефлектора, фирменные A-100 и A-200, но именно эта конструцию доказала свою эффективность, поэтому остальные антенны я убрал, за ненадобностью.

При установке на крыше, 2эл. на 145МГц не прогрывают коллинеарной антенне 3×5/8, я проверял A-1000 длиной 5метров. При тестировании, на расстоянии 50км, сигнал от A-1000 и 2х элементной антенны был одинаковым. Так и должно быть потому что, A-1000 имеет реальное усиление примерно 4дб, а описанная здесь 2х эл. антенна 4.8дб. Она всегда выигрывала у любых автомобильных антенн типа: 1/4, 1/2, 5/8, 6/8, 2×5/8. Если две такие антенны сфазировать вместе, они уверенно выигрывают у A-1000. Проверьте сами и убедитесь в этом.

Читайте также:  Как сделать доборы для дверей своими руками

Рассмотрим конструкцию, она очень простая (хотя возможно и не красива внешне, я ее сделал за 20 минут) и состоит из рефлектора длиной 1002мм и разрезного вибратора длиной 972мм (разрыв для кабеля 10мм). Расстояние между рефлектором и активным элементом, примерно 204 — 210мм. Сами элементы выполнены из 4мм проволоки в изоляции. Если у вас провод будет другой, нужно скорректровать размеры. Места пайки, залепите сырой резиной, чтобы влага не попадала. КСВ от 144 до 146МГц, примерно 1.0 — 1.1, измерения проводились прибором SWR-121.

Входное сопротивление антенны 12.5ом, для оптимального согласования с кабелем 50ом, я использовал трансформатор сделанный из двух кусков пятидесятиомного кабеля. Они должны иметь одинаковую длину по 37 — 44см (при настройке подберите точнее) каждый. Оба куска кабеля, нужно прижать друг к другу по всей длине. Вот собственно и все.

Рекомендую эту антенну всем, вместо штырей, зигзагов, фирменных коллинеарных антенн и прочей гадости, на которых пишут явно завышенное усиление!

Если сравнивать её с двумя квадратами, то при примерно равном усилении, на два квадрата вам понадобится 4 метра проволоки, а на эту антенну только два. Для двух квадратов, нужна будет более крепкая палка, потому что они будут заметно тяжелее. Разница в усилении составляет 0.3 дб, что совсем несущественно при реальных QSO, зато подавление по бокам и сзади у 2ел. антенны значительно меньше и это тоже плюс, нам ведь нужна круговая диаграмма направленности. Антенну легко смоделировать в MMANA и проверить ее характеристики, здесь лежит готовый ММА файл.

Вариант с большим усилением

Многие спрашивают, как еще более поднять усиление описанной антенны и при этом сохранить широкий лепесток. Веть при добавлении элементов, будет не только расти усиление, но и сильно сужаться лепесток. Все очень просто, нужно сфазировать несколько однотипных антенн. На рисунке показано как это сделать. Проще всего сфазировать 2 или 4 антенны, разносить их нужно только по вертикали, потому что, горизонтальный разнос, также сузит главный лепесток. Поскольку описанная антенна обладает слабой направленностью, вы получите антенну с больщим усилением и практически круговой диаграммой.

Еще один важный плюс соединения нескольких однотипных антенн, это улучшение качества приема мобильных станций, находящихся в движении. Да, да, на эту простую конструкцию мобильные станции будут приниматься значительно лучше чем на различные фирменные штыри длиной 5 — 7 метров (типа А-1000, 3×5/8 и др.).

Также рекомендую ставить такие антенны в городах которые окружены со всех сторон горами. Теперь многочисленные ‘отраженки’, возникающие в таких местах, будут работать на вас. В таких условиях 2 х 2 реально будет выигрывать у ‘солидных’ многоэлементных антенн. Реальное усиление конструкции из двух антенн, примерно 7.3дб. Но учтите, что принимать она будет лучше чем одиночная антенна с реальным усилением 8-10дб. Четыре сфазированные антенны, будут иметь усиление 12.3дб, при этом направленность будет практически круговой! Никакая одиночная антенна не сможет тягаться с ней!

Через некоторое время, был сделан разборный вариант антенны, для походов и экспедиций. Испытания в полевых условиях, подтвердили хорошую её эффективность, она не уступает коллинеарным антеннам длиной 3 — 5 метров (2×5/8 или 3×5/8) при дальности до 50км и выигрывает у них на дистанциях от 90км и более. На фотографии, показан походный вариант антенны, в разобранном виде. Для сборки антенны, требуется 30 секунд. В качестве бума, используется водопроводная пластиковая труба, длиной 510мм и диаметром 21мм. Размеры элементов, были немного скорректированы, потому что использовалась другая проволока. Для такой маленькой антенны, всегда найдется место в вашем рюкзаке, да и на больших высотах, в горах, вам не придется прикладывать чрезмерные усилия для ее удержания (кто был на 4000 и выше, знает о чем я говорю). Весь кабель и трансформатор находятся внутри пластиковой трубы, это защищает их от случайных обрывов и влаги. Антенну можно ремонтировать прямо в походе, погнутые элементы достаточно выпрямить рукой. Хотя делать этого не приходилось, потому что там и ломаться то нечему.

Вариант 50-омной антенны

По просьбам ‘лентяев’, которые не хотели делать трансформатор, я расчитал антенну с сопротивлением 50ом, для непосредственного соединения с кабелем идущим к радиостанции. Внешний вид остался прежним. Кабель подключается к активному элементу напрямую, для улучшения симметрирования, рекомендую сделать один виток вокруг ферритового кольца, как можно ближе к месту пайки. Усиление, этого варианта антенны, несколько меньше и составляет приблизительно 4.3дбд. Размеры даны для проволоки диаметром 4мм, если у вас другой материал, нужно скорректировать размеры. Расстояние между рефлектором и активным элементом, нужно подобрать точнее, в пределах 415 — 440мм, до получения минимального КСВ.

Отзывы об антенне

RZ6HON сообщает, что сделал конструкцию и установил ее, у себя на балконе, вместо автомобильного штыря. Слышимость станций на расстояии 20 — 40км заметно улучшилась. Общее впечатление — положительное. Штырь демонтирован и убран в дальний угол.

RW6HQN констатирует, что после установки 2ел антенны, связь из Пятигорска с Кисловодском стала значительно лучше, до этого работала A-1000, установленная на крыше.

В Пятигорском радиоклубе RZ6HXA установлена аналогичная антенна, она работает лучше чем стоящая рядом самодельная Super-J.

Станция UE6GGG работала с горы Большое Седло (высота 1409м), на эту антенну и штырь 5/8. 2-х элементная антенна давала неоспоримое приемущество, с портативки мощностью 5Вт, легко удавались связи в радиусе 200км.

Источник

Записки программиста

Петлевой диполь на 145 МГц из измерительной рулетки

18 декабря 2019

Сегодня мы познакомимся с антенной, которая ранее не рассматривалась в этом блоге. Она называется петлевой диполь, петлевой вибратор или folded dipole. Петлевой диполь обычно не используется, как самостоятельная антенна, однако его часто применяют в качестве активного элемента в антеннах Уда-Яги. Дело в том, что в плане диаграммы направленности, усиления и так далее петлевой диполь аналогичен простому диполю. Главное же его отличие заключается в более высоком входном сопротивлении, около 300 Ом. С увеличением числа элементов входное сопротивление антенны Уда-Яги снижается, из-за чего затрудняется ее согласование. Использование активного элемента с высоким входным сопротивлением позволяет решить эту проблему.

Как можно догадаться по названию, петлевой диполь представляет собой вытянутую петлю. Периметр петли составляет около 1 λ. Используя балун 1:4 мы можем преобразовать импеданс антенны из 300 Ом в 75 Ом, что даст нам КСВ 1.5 при запитке коаксиальным кабелем 50 Ом. Это около 4% потери мощности, что, как правило, не критично. К тому же, реальный КСВ будет отличаться, так как антенна находится не в свободном пространстве. На нее влияет земля и находящиеся поблизости предметы, например, та же линия запитки. При необходимости 75 Ом можно преобразовать в 50 Ом, добившись тем самым полного согласования. Далее будет показано, как этого достичь.

Чтобы было интереснее, антенну было решено делать на радиолюбительский УКВ диапазон 2 метра. На УКВ вместо балуна 1:4 на ферритовых кольцах применяют схему под названием U-колено (иллюстрация позаимствована отсюда [PDF]):

Из рисунка мы сразу понимаем этимологию слова «U-колено»: полуволновой отрезок кабеля по форме напоминает латинскую букву U. В английском языке U-колено обычно называют как-то в стиле «1:4 coax balun».

Как же это работает? Когда ток выходит из коаксиального кабеля (слева), ему нет особой разницы, куда течь, поэтому он делится пополам. Половина тока уходит в антенну, а половина — в U-колено. Так как длина последнего составляет λ/2, то, пройдя U-колено, ток приходит в антенну в противофазе. Таким образом, имели ток I и напряжение от 0 до V, а получили ток I/2 и напряжение от -V до V. Применяя закон Ома, приходим к выводу, что импеданс увеличился в 4 раза.

Но этим мы показали лишь то, что U-колено выполняет роль трансформатора. Спрашивается, работает ли оно также и балуном? Ответ можно найти у Игоря Викторовича в разделе 3.6.5.3 на странице 128:

А [синфазный ток] в данном случае вообще отсутствует! Ему просто нет пути на оплетку — обратите внимание (это не ошибка и не опечатка) — оплетка кабеля с антенной вообще не соединена. Поэтому ничего с антенны на оплетку затечь не может.

Таким образом, U-колено выполняет роль не только трансформатора, но и балуна.

С теорией более-менее разобрались. Давайте же проверим все это хозяйство в деле. Антенна у меня получилась вот такая:

Полотно антенны было сделано из измерительной рулетки. Не знаю, что за металл в ней используется, но он неплохо паяется. Металл тонкий и его можно резать простыми ножницами, если у вас нет специальных ножниц по металлу. Краска легко снимается с рулетки при помощи надфиля. Полотно антенны крепится при помощи нейлоновых стяжек к Т-образной конструкции из пары труб ПВХ. При этом антенна прекрасно держит форму. Диаметр короткой трубы — 25 мм, диаметр длинной — 16 мм. В первой, более толстой, трубе при помощи шуруповерта и ступенчатого сверла было просверлено отверстие, в которое и вставляется вторая, более тонкая, труба.

В качестве кабеля 75 Ом был использован RG-6U+CU. Он недорог и имеет еще меньшие потери [PDF], чем RG213. Обратите внимание, что обычный кабель RG6 имеет алюминиевую оплетку, которая нам не подходит. Перед покупкой убедитесь, что используете вариацию кабеля с медной оплеткой, которая без проблем паяется с обычным флюсом, тем же ЛТИ-120. Измеренный коэффициент укорочения кабеля составил 0.84. Это типичное значение для кабеля со вспененным полиэтиленом в качестве диэлектрика. Таким образом, в U-колене использовался отрезок кабеля длиной 87 см.

После подстройки плечи антенны получились по 47.5 см. Здесь имеется ввиду расстояние от края до центра антенны, а не общая длина полотна в каждом из плеч. При этом был получен следующий график КСВ:

Можно заметить, что антенна имеет входной сопротивление около 75 Ом, как и ожидалось. Настройка велась на балконе, поэтому график немного менялся в зависимости от положения антенны. Но в среднем он выглядит, как на приведенном скриншоте, и КСВ никогда не превышает 1.5. В принципе, с такой антенной можно без проблем проводить радиосвязи. Проверено.

Но из спортивного интереса было решено попробовать согласовать ее еще лучше. Для этого был использован трансформатор из λ/12 отрезков кабелей (иллюстрация позаимствована отсюда):

Используя данную схему, можно согласовать любые два чисто активных импеданса для заданной частоты, если вы найдете подходящие кабели. В качестве кабеля 50 Ом я использовал RG213. Как мы ранее уже выясняли, его КУ составляет около 0.665. Соответственно, был использован отрезок длиной 11.5 см. Длина отрезка RG6 составила 14.5 см.

Итоговый график КСВ:

Если читать график буквально, то резонанс попал чуть ниже 145 МГц. Но раз антенна имеет полосу по уровню КСВ аж в 40 МГц, было решено не инвестировать время в ее дальнейшую подстройку. К тому же, есть подозрения, что провал ниже 145 МГц вызван влиянием на антенну ее окружения.

А что происходит с диаграммой направленности антенны на ее рабочем диапазоне? Ответ нам поможет получить cocoaNEC. Если верить модели (файл .nc), диаграмма направленности антенны в свободном пространстве остается неизменной во всей полосе.

Как уже было отмечено, петлевой диполь сам по себе используется редко. Антенна работает точно так же, как fan dipole с двумя парами плеч одинаковой длины, то есть, утолщенный диполь (файл .nc), и не дает по сравнению с ним существенных преимуществ. Отличие заключается только в более высоком входном сопротивлении.

Зато мы опробовали пару новых способов согласования. Особенно полезной мне видится схема на λ/12 отрезках кабелей. С ее помощью можно использовать RG6 в качестве замены RG213, преобразовав импеданс в 50 Ом на каждом из концов кабеля для заданой частоты. Таким образом, получаем более дешевый кабель, имеющий меньшие потери.

Источник

Читайте также:  Демпфер двери автомобильный своими руками
Оцените статью