- Как сделать трёхфазный ветрогенератор своими руками?
- Ветрогенератор 1000 Вт на три фазы своими руками
- Изготовление магнитных дисков своими руками
- Изготовление диска индуктивностей трёхфазного ветрогенератора
- Схема соединений индуктивностей трёхфазного ветрогенератора
- Подшипниковый узел на трёхфазный ветрогенератор
- КРАТКИЙ БРИФИНГ
- Ветрогенератор на асинхронном двигателе своими руками
Как сделать трёхфазный ветрогенератор своими руками?
Главная страница » Как сделать трёхфазный ветрогенератор своими руками?
Конструкции ветряных генераторов для применения в домашних условиях представлены обширным набором вариаций. Между тем большая часть рассматриваемых схем ветрогенераторов, как правило, основана на использовании стандартных электродвигателей. Моторы подбирают, исходя из оптимальных параметров работы в режиме генератора, либо модернизируют – добавляют магниты, перематывают и т.д. Эффективность таких установок крайне низка. Между тем существует интересный вариант конструкции своими руками – трёхфазный ветрогенератор мощностью около 1000 Вт, где готовый электродвигатель не применяется.
Ветрогенератор 1000 Вт на три фазы своими руками
Основное отличие такой конструкции от типичных существующих вариантов – изготовление «с нуля» генератора – главного компонента трёхфазной ветрогенераторной установки, а также механической части — узла подшипников вала винта. Всё остальное:
- винт,
- лопасти,
- опорная штанга,
- система автоматики,
выполняются согласно классическим конструкциям ветряных генераторов, подходящих под условия домашнего хозяйства. Поэтому рассмотрим основу темы – изготовление своими руками трёхфазного генератора ветряка на неодимовых магнитах.
Конструкция трёхфазного ветрогенератора содержит:
- Диски магнитные (2 шт.).
- Неодимовые магниты (12 шт.).
- Диск индуктивности (1 шт.).
В собранном виде рабочий диск индуктивности закреплён и остаётся неподвижным, тогда как диски, оснащённые неодимовыми магнитами, закреплённые на валу винта, вращаются силой ветра. В результате наводимым магнитным полем в теле проводников катушек индуктивности формируется ЭДС (электродвижущая сила).
Изготовление магнитных дисков своими руками
Магнитные диски диаметром 500 мм, под установку неодимовых магнитов ветрогенератора своими руками, вырезаются из материала, подобного листовым облицовочным строительным панелям. Вырезанную заготовку нужно разметить, а именно определить:
- внешний край дисковой области под равномерное размещение дюжины прямоугольных магнитных элементов,
- центральную область под изготовление отверстия для посадки на вал винта трёхфазного ветрогенератора.
Далее под каждый отдельно взятый неодимовый магнит размечается и вырезается инсталляционное поле – по форме соответствующее форме магнита. Эту работу удобно проделать с помощью электро-лобзика, используя подходящую опору для рабочего листа материала.
Подготовка дисковой основы под размещение неодимовых магнитов. Размеченные места посадки удобно вырезаются электрическим инструментом — электролобзиком
На следующем этапе производства трёхфазного ветрогенератора своими руками, изготовленные диски, оснащённые неодимовыми магнитами, необходимо залить эпоксидной смолой. Для этого из пластиковой плёнки делают большеразмерные заливные «стаканы», как показано на картинке ниже.
Пример сооружения большого стакана под заливку эпоксидной смолой уложенных по вырезам неодимовых магнитов. В центре основы просверлено отверстие под крепление
Оснастив детали трёхфазного ветрогенератора пластиковыми стаканами, полученные заготовки под заливку эпоксидной смолой следует разместить на поверхности, установленной строго горизонтально относительно земли.
В области центральной части монтажного диска устанавливается малый «стакан», — устройство, склеенное из листов толстой бумаги. Размер диаметра такого стакана — 50 мм. Благодаря такого рода технической вставки, удаётся сформировать посадочный круг для узла подшипников самодельного ветрогенератора.
Процедура заливки магнитной дисковой основы ветрогенератора эпоксидной смолой. Для лучшей текучести смолу можно немного подогреть выше комнатной температуры
Далее останется только аккуратно залить внутрь полученного «стакана» предварительно разведённую жидкую эпоксидную смолу. Заливка выполняется до уровня несколько ниже (на 1 – 2 мм) уровня верхней рабочей плоскости неодимовых магнитов.
Необходимо дождаться полного затвердения структуры залитой эпоксидной смолы. Конечным результатом получаются две технические детали самодельного трёхфазного ветрогенератора, подобные такой, что изображена на картинке ниже.
Так выглядит готовый магнитный диск ветрогенератора, после полного застывания эпоксидной смолы. В общей сложности требуется изготовить два экземпляра
Изготовление диска индуктивностей трёхфазного ветрогенератора
Прежде чем делать дисковое плато под катушки индуктивности, логично изготовить необходимое число непосредственно катушек. В общей сложности для трёхфазного ветрогенератора потребуется девять элементов индуктивности.
Под изготовление индуктивностей генератора ветряка используется медный провод диаметром 1,4 мм. Намотка индуктивностей выполняется проводом в две жилы. Такой вариант намотки обеспечивает прохождение токов высокого уровня без риска повреждения проводника.
Количество витков каждой катушки индуктивности для данной конструкции – 35. Этого числа вполне достаточно при условии применения в составе трёхфазной ветрогенераторной установки 12-вольтных накопительных аккумуляторных батарей.
Если вместо 12-вольтовых аккумуляторов предполагается применять 24-вольные АКБ, соответственно, число витков катушек увеличивают вдвое – до 70. Под намотку катушек индуктивности удобным видится использование нехитрого приспособления, конструкция которого показана на картинке ниже:
Несложное приспособление, состоящее из двух деревянных пластин круглой формы и шпильки с резьбой под гайки, помогает быстро намотать нужное число катушек
После приготовления требуемого числа катушек индуктивности (9 шт.), изготавливается дисковое плато под размещение этих элементов конструкции. Плато следует изготовить с учётом всех требований, предъявляемых к установкам генерации электричества.
Для производства дискового плато индуктивностей самодельного ветрогенератора, в частности, потребуется изготовить форму под заливку эпоксидной смолой. Форма делается на основе фанерного листа или подобного материала, обладающего диэлектрическими свойствами.
Приготовление формы под заливку эпоксидной смолой и равномерное распределение катушек по кругу
Катушки индуктивности статора самодельного ветрогенератора размещают равномерно по всей окружности изготовленной формы. Предварительно место укладки индуктивностей покрывается диэлектрической антистатической тканью, чем исключается риск электрического пробоя.
Поверх катушек индуктивности также настилают слой диэлектрической антистатической ткани. После выполнения изоляционных работ заливают форму эпоксидной смолой до верхнего уровня установленных катушек индуктивностей. Получившиеся неровности заливки аккуратно сглаживают кистью.
Процедура заливки, до начала которой необходимо все элементы закрыть специальным материалом, исключающим появление статического электричества
Схема соединений индуктивностей трёхфазного ветрогенератора
Выводы катушек, залитых смолой на плато индуктивностей, потребуется спаять в соответствии с трёхфазной конфигурацией. На приведённой ниже схеме наглядно показаны пути соединений. Получается конфигурация спайки: 1-4-7; 2-5-8; 3-6-9; соответственно.
Схема соединения всех девяти катушек индуктивности, размещённых на дисковом плато. Так получают трёхфазный выход ветрогенератора
Для того чтобы полученное на трёхфазном генераторе своими руками напряжение выпрямить и получить однофазное постоянное напряжение, используются схемы выпрямительных устройств. Такие схемы достаточно просты, широко распространены и собираются без особых проблем.
Выпрямленное напряжение перенаправляется через модуль автоматики на зарядное устройство. Далее полученная трёхфазным ветрогенератором энергия аккумулируется в батареях. Можно использовать любой классический вариант контроллера заряда, к примеру, такой как здесь.
Принципиальная схема для сборки трёхфазного выпрямителя. На выходе получают однофазное постоянное напряжение, пригодное для подачи на зарядный модуль
Подшипниковый узел на трёхфазный ветрогенератор
Учитывая чувствительность дисковой схемы трёхфазного ветрогенератора по отношению к возможным перекосам и вибрациям конструкции, особого внимания для производства заслуживает подшипниковый узел.
Вариантов разработки подшипникового узла самодельного ветрогенератора существует множество. Но в любом из выбранных вариантов потребуется применять надёжные, точные, высокооборотные подшипники.
Разработчиками этой конструкции применялись роликовые подшипники (2 шт.), которые устанавливались внутри узла, выполненного по принципу «труба в трубе». Внутренняя труба исполняет роль промежуточного звена между отдельными подшипниками.
Вариант сборки подшипникового узла для трёхфазного ветрогенератора. Этот узел должен выполняться особо тщательно с применением надёжных подшипников
После сборки в единое целое всех описанных деталей конструкции трёхфазного ветрогенератора, получается достаточно мощная энергетическая установка, созданная своими руками.
По результатам испытаний такой трёхфазный ветрогенератор способен в среднем выдавать до 1000 Вт мощности.
Винт ветрогенератора на три фазы выполняется классическим трёхлопастным вариантом. Размах лопастей конструкции предпочтительно выполнить как минимум на 1,8 метра. Получается конструкция, примерно такого же исполнения, как показано на картинке ниже.
Конечный результат – домашняя трёхфазная ветряная генераторная установка мощностью до 1000 Вт. Это уже более серьёзное технологическое оборудование по сравнению с ветряками на основе различных электродвигателей.
Вот, примерно так, посредством представленных выше примеров домашней технологии, вполне доступным видится исполнение конструкции — трёхфазный ветрогенератор. Самодельная электрическая система, действующая от силы ветра, позволит если не полностью, но частично экономить электричество. То есть налицо экономичная сторона дела, в частности, имеющая прямое отношение к бытовому хозяйству.
При помощи информации: Instructables
КРАТКИЙ БРИФИНГ
Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .
Источник
Ветрогенератор на асинхронном двигателе своими руками
В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.
Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.
асинхронный двигатель переделка в генератор Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.
Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно «север», второй полюс «юг». Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.
После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.
После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.
В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.
Далее дошла очередь до винта. Лопасти для ветрогенератора были вырезаны из ПВХ трубы диаметром160мм. Ниже на фото сам винт диаметром 1,7 м., и расчетные данные, по которым делались лопасти.
После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.
Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.
Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку . Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.
Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся.
Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.
Источник