Ветряк своими руками для дачи как сделать

Содержание
  1. Как сделать ветряк на даче своими руками
  2. Материалы для изготовления
  3. Характеристики вертикальных ветряков
  4. Блок управления
  5. Лопасти для ветряка
  6. Ветрогенератор для частного дома своими руками: где деньги?
  7. Промышленные ветрогенераторы: образец для подражания
  8. Как определить скорость ветра: хватит ли его напора для бытового ветряка
  9. Теоретическая часть проекта: на что обратить внимание при выборе конструкции
  10. Скрытая ошибка — слабый ветер: что умалчивают продавцы
  11. Первая трудность
  12. Как влияет зона турбулентности
  13. Молниезащита ветрогенератора
  14. Как лукавят производители ветряков
  15. Ветряки для дома своими руками: обзор конструкций
  16. Как установить ветрогенератор: надежная схема мачты для крепления на высоте
  17. Ветрогенератор: устройство и принцип работы электрической схемы простыми словами
  18. Аккумуляторы для ветрогенератора: еще одна проблема для владельца дома
  19. Как рассчитать экономический эффект: цена ветрогенератора

Как сделать ветряк на даче своими руками

Только последние 100-150 лет ветряки ориентируются на получение электрической энергии. Одной из основных проблем строителей является частая ошибка в изначальных расчетах. Есть также и такие «специалисты», которые без расчетов пытаются построить рабочий качественный ветряк.

Естественно, самым простым способом является покупка готового ветряка с его последующей доставкой и установкой. Но, если посмотреть на современный рынок цен на данные изделия, то далеко не каждый дачник готов позволить выделить такую денежную сумму. К тому же, далеко не каждый дачный участок нуждается в установке дорогостоящего оборудования.

Материалы для изготовления

У хозяйственного человека всегда имеется арсенал железок и агрегатов, которые были добыты из уже списанного оборудования. Ветряки способны работать не только в качестве источников электрического снабжения, но также и выступать в роли зарядных станций.

Хвост ветряка должен быть подпружинен, а трубки устанавливаются шарнирно, длина хвоста составляет 600мм, ширина – 400мм. Ось поворота смещается относительно оси симметрии вентилятора на 100-110мм. Узел поворота следует выполнять с использованием ступичного подшипника автомобиля.

Данная конструкция отводит ветровое колесо при соответствующем изменении силы ветра автоматически в сторону. Такую конструкцию можно установить на крышу либо на грунтовой участок.

То количество энергии, которое не было использовано, накапливается в аккумуляторе. Его желательно выбирать больших мощностей. Замечательно подойдут аккумуляторы от известных тракторов «Беларусь». Цена – как у Вас получится договориться.

Бывают случаи, когда приходится тратить дополнительные деньги на покупку соответствующих деталей для блока управления и инвертора.

Заводские ветряки с небольшой мощностью (около 300 Вт) Вы вряд ли встретите. Самая маленькая мощность рыночного ветряка – от 750 Вт. Русские модели ветряков обойдутся примерно в полторы тысячи долларов. Причем, это мы говорим только о покупке прибора, без учета стоимости контроллера управления, мачты, аккумуляторного блока, инвертора.

Ветряк считается одной из самых перспективных на сегодняшний день систем, которая способна производить электрическую энергию в автономном режиме. Максимально эффективной системой является объединение нескольких ветряков в одну большую цепь с использованием специального пункта компьютерного управления. Это дает прекрасную возможность удаленного управления сразу несколькими установками.

Прежде, чем приступить к установке данного блока, следует произвести соответствующие расчеты. Сначала определите, какой ветровой потенциал местности на участке, где именно планируется возвести автономный источник энергии. Также важно обратить внимание на разработку блок-схемы турбины с учетом характеристик площадки.

Популярная конструкция: ветротурбина, генератор, блоки управления, блоки преобразования, мачта, аккумуляторная батарея, устройство поворота.

Обычно турбина состоит из3-4 лопастей, хотя Вы их можете использовать другое кол-во. Чтобы избежать возникновение частых неполадок и сбоев в работе турбины, применяется аэромеханическая система, которая предназначена для стабилизации частоты.

Характеристики вертикальных ветряков

Сегодня более распространены ветровые генераторы с вертикальной осью вращения. По принципу работы вертикальные ветряки делятся на: тихоходные и быстроходные. Наиболее популярный ветряк вертикального типа – карусельные ветрогенераторы.

У каждой конкретной модели свои мощности и характеристики в работе, но можно выделить усредненный рабочий параметр каждого из них:
1. Значение оптимальной мощности – 1кВт.
2. Устанавливается 2 ветровых модуля.
3. В модельной конструкции нет растяжек.
4. Средняя высота – 12м.
5. Бесшумность в работе.
6. Необходимая минимальная скорость ветра – 3м\с.

На сегодняшний день такие установки пользуются большим спросом в США, Японии и Великобритании.

В этих странах производство ветряков ставится на массовые потоки. Вертикальные ветряки также является довольно простыми в эксплуатации, не нуждаются в сложном техническом обслуживании и могут прекрасно справиться даже с частоизменяющимся воздушным потоком.

При возрастании скорости ветра, такая установка может моментально наращивать силу тяги. В результате, скорость вращения оси будет автоматически стабилизироваться. К преимуществам данных установок можно также отнести их бесшумную работу, что позволяет использовать их недалеко от жилых площадей.

Отметим еще ортогональный тип ветряков, который применяется в основном в крупной энергетике. Такие ветряки имеют большой минус в работе – потребность «разбега», т.е. необходимо сначала подвести энергию к устройству, а затем уже запустится сам процесс раскрутки определенных аэродинамических параметров.

Блок управления

Предназначен для стабилизации напряжения заряда аккумулятора, а также ограничения значения тока максимально допустимых значений, стабилизации нагрузки генератора при отсутствии потребителя либо полном заряде аккумулятора. Ниже предоставлена схема, в которой блок управления состоит из 2-ух модулей.

Первый модуль – импульсный стабилизатор напряжения, служит ограничителем по току в 10% общей емкости аккумулятора, при этом значение напряжения на выходе составляет 14,2В.

Второй модуль – импульсный коммутатор нагрузки. Если мощность ветряка не используется, а значение напряжения на входе составляет 18В, коммутатор подключит резистор (импульсный режим). В результате произойдет максимальный отбор мощностей.

Питание потребителя 220В возможно благодаря подключению через обычный автомобильный инвертор. В части освещения планируется переход на светодиоды либо отдельную сеть (напряжение 12В).

Лопасти для ветряка


Специалисты утверждают, что лопасти — одна из основных составляющих частей при конструировании ветряка. Поэтому, о них постараюсь рассказать максимально подробно.

1. Чем длиннее лопасти, тем они будут легче крутиться при слабом ветре, но при этом есть один минус — маленькая скорость кругового вращения.

2. Следует помнить, что на концах лопастей вращение обычно намного сильнее, чем у самого основания, именно поэтому следует рассчитывать отношение скорости вращения лопастей ветряка. По статистике, большинство мельниц имеет среднюю скорость 40 оборотов в минуту.

3. Вот формула для расчетов:
P=k*v^3, где k-постоянная ветряка, v-скорость ветра.

4. Чем Выше будет установлен Ваш ветряк над уровнем, тем большее количество вырабатываемой мощности можно получить из потребляемого ветра. Специалисты рекомендуют использовать расстояние на 6-15 м.

Лопасти для ветряка изготовить самому очень даже легко. Для этого необходимо разрезать трубу на 3 секции. Две из них будут по 150 градусов, а третья, как Вы уже догадались — 60 градусов. Красные линии на рисунке — это линии среза.

В итоге мы получим две большие 150 градусные лопасти, которые будут крутиться практически в любой ветер, но только с маленькой скоростью.

Угол для лопастей. Следующей нашей задачей будет изготовление узла крепления лопастей для ветряка. Вообще, существует очень много способов крепления лопастей. Но я Вам расскажу об одном наиболее эффективном из них. Рекомендую сделать следующее: изготавливать мы будем винт из диска для пилы, поэтому, сначала найдите пилу.

Теперь при помощи дрели проделайте три группы отверстия в этом винте. Смещение отверстий должно быть по 120 градусов каждое, соответственно. Для удобства можете использовать чертежный транспортир.

Да, и еще — т.к. мы будем использовать диск от пилы, то нужно будет еще и избавиться от зубов, расположенных на краях диска. Ведь он может слететь с ветряка и попасть в человека, что крайне опасно. Последствия могут быть самые катастрофические.

Должен получиться вот такой вот верх ветряка:

Изготовление флюгера и шарнира . Теперь нам нужно изготовить платформу для поворота лопастей. Именно на ней и будет установлен генератор. Для изготовления платформы будем использовать квадратную трубу, а также фланец и лист металла, предварительно обрезанный по Вашим расчетам.

— Тем временем вырезаем из железа хвост для будущего ветряка.
— Теперь делаем пропил вдоль трубы ( для этого используем болгарку).
— Не забудьте также и о чехле для защиты ветряка от плохих погодных условий. Можете использовать пластиковую трубу.
— Теперь крепим все в единое целое, устанавливаем внутрь мотор для ветряка, получаем следующую картину.

Читайте также:  Как сделать корсет для спины своими руками

Изготовление мачты для ветряка. Мачту можете изготовить по своему усмотрению, я бы посоветовал использовать 4 трубы с переходным креплением:

Как вы поняли, влево ушла та часть мачты, на которую будем крепить ветряк. Получилось!

Теперь давайте сравним текущие цены на рынке оборудования. К примеру, ветряки марки «WIND TURBINE” (не учитываем стоимость мачты, преобразователь и блок управления): мощность 500 Вт 28.500 руб., 2кВт 60.000руб., 3кВт 120.000 руб., 5кВт 180.000 руб.

Если рассмотреть ветряки типа ВЭУ, то цены на них будут на порядок ниже. К примеру, ветровой генератор мощностью в 1 кВт без блока управления, мачты и прочих элементов стоит всего 19.000 руб.

Как видите, покупка такого дорогостоящего оборудования для установки его на даче – крайне сомнительна. Поэтому приходится работать самостоятельно либо обращаться за помощью к специалистам.

Естественно, каждый случай отдельный и нельзя делать один вывод для всех. В некоторые моменты действительно проще купить готовое оборудование и сразу эксплуатировать его.

Источник

Ветрогенератор для частного дома своими руками: где деньги?

Интернет начинает «трещать по швам» от хвалебных статей авторов, предлагающих всем желающим использовать природную энергию ветра для получения бесплатного электричества.

Я предлагаю рассмотреть этот вопрос с практической точки зрения, оценить экономический эффект до того, как начнете создавать ветрогенератор для частного дома своими руками или даже приобретать заводскую модель.

Поговорим о трудностях, с которыми вам придется столкнуться: их необходимо предусмотреть и преодолеть. Тема сложная. Надо оценить аэродинамические и механические характеристики, сделать электротехнический расчет.

Промышленные ветрогенераторы: образец для подражания

Не секрет, что альтернативная энергетика действительно позволяет получать электричество буквально из ветра. В странах Европы промышленные ветрогенераторы занимают огромные площади и работают автономно на благо человека.

Они имеют огромные размеры, расположены на открытых всем ветрам участках, возвышаются над деревьями и местными предметами.

А еще ветряки установлены на удалении друг от друга. Поэтому случайные поломки и повреждения одного не могут причинить вреда соседним конструкциям.

Эти принципы создания ветровых генераторов будем брать за основу разработки самодельных устройств. Они созданы по научным разработкам,
опробованы уже длительной эксплуатацией, эффективно работают.

Начнем с анализа характеристик местности, на которой планируем создавать ветряную электростанцию.

Как определить скорость ветра: хватит ли его напора для бытового ветряка

Вопрос обсудим на основе научных фактов и уже допущенных ошибок многими владельцами частных домов

Теоретическая часть проекта: на что обратить внимание при выборе конструкции

Среднегодовое значение ветра для любой местности России или другой страны можно узнать на карте ветров. Эти данные имеются в широком доступе.

Если рассмотреть всю территорию, то мест для благоприятного пользования ветряной энергией со скоростью от 5 м/сек и выше у нас не так уж много, как в Европе.

Я объясняю эту ситуацию тем, что теплый воздух Гольфстрима, поднимаясь от нагретой воды, сразу устремляется в холодные районы. Чем выше перепад температур, тем больше его скорость.

Пройдя несколько тысяч километров над Европой, его сила слабеет. Наибольший перепад температур весной и осенью вызывает бури и ураганы.
Нам важно понимать, как определить скорость ветра правильно в своей местности.

Возьмем величину 5 м/сек за основу, и рассчитаем мощность ветрового потока для наиболее распространенного горизонтально расположенного осевого генератора.

Учтем, что его лопасти охватывают площадь круга S (м кв.) с диаметром D (м). Через нее проходит ветер со скоростью V (м/сек).

Ветровая энергия Рв рассчитывается по формуле:

ρ — это плотность воздушной массы (кг/м куб.)

Если взять усредненные значения, например, площадь 3 м кв и плотность
воздуха 1,25 кг/м 3 , то ветер, дующий со скоростью 5 м/сек, способен создать мощность чуть меньше, чем 2 киловатта.

Теперь наша задача — определить, какая ее часть сможет преобразоваться в полезную электрическую энергию. Грубо ее можно оценить по процентному соотношению в 30÷40%. Конструкция и технологические характеристики ветряного колеса просто не позволят эффективно взять больше.

Более точное определение находят формулой, учитывающей:

  • коэффициент ε, определяющий долю использования ветряной энергии конструкцией ветряка. Максимальная величина, создаваемая быстроходными конструкциями, составляет 40-50%;
  • КПД редуктора —∙максимум порядка 90%;
  • КПД генератора ≈85%.

Величины всех этих коэффициентов у разных моделей генераторов ветряков сильно отличаются между собой. Я привел значения для промышленных изделий. У самодельщиков они будут значительно ниже.

Если подставить все эти цифры, то даже для заводской конструкции ветрогенератора, сделанной по точным чертежам и на промышленных станках, мы сможем при скорости 5 м/сек и описываемой площадью лопастями винта 3 метра квадратных получить меньше 700 ватт электрической энергии.

Какую ее часть сможет взять самодельный ветряк, остается только догадываться.

Мировые производители ветрогенераторов указывают, что для того, чтобы вырабатывать 3 кВт электроэнергии, а это оптимальная величина для частного дома, необходимо:

  • снимать с ветряного колеса порядка 5,1 кВТ;
  • иметь диаметр ротора 4,5 метра;
  • располагать ветряк на высоте от 12 метров;
  • использовать ветер со скоростью 10 м/сек.

Колесо должно начинать вращать генератор уже на 2 м/сек. Только в этом случае можно говорить об окупаемости всей конструкции и эффективном использовании мощности ветра.

Если же скорость снизится, хотя бы до 7 м/сек, то энергия ветрогенератора упадет на 50%. А теперь еще раз внимательно посмотрите на карту ветров России…

Однако не все так плохо. Теоретические расчеты можно проверить на практике. Для нашего случая продажа предлагает многочисленные конструкции измерительных приборов — анемометры.

Стоят они не дорого, имеют дополнительные функции измерения температуры, указания текущего времени. Их можно заказать в Китае.

Такой анемометр позволяет реально оценить силу ветра на вашей местности, чтобы проанализировать варианты эксплуатации будущей ветроэлектростанции (ВЭС). А их минимум 2:

  1. частичное удовлетворение потребностей в электроэнергии;
  2. полный переход на альтернативную энергетику.

Скрытая ошибка — слабый ветер: что умалчивают продавцы

Первая трудность

Обратите внимание на высоту размещения ветряного колеса относительно земли. Подумайте, почему все промышленные ветряки располагают от 25 метров и более.

Ведь это значительно усложняет их установку, эксплуатацию, обслуживание, ремонт. Приходится применять дорогую высотную технику, создавать прочные площадки для ее размещения.

А ответ прост: на высоте от 25 метров скорость ветра намного выше, чем у земли. Все таблицы и справочники с картами ветров создаются в первую очередь для промышленных установок, поднятых в зону 50-70м.

Если вы смонтируете свой самодельный ветрогенератор на 10 метрах, то ветер будет дуть слабее, чем указано в справочнике. А на большую высоту без специальных технических средств поместить ветряк весьма проблематично.

Работу ветряного колеса вызывает не столько скорость передвижения воздушной массы, сколько ее давление на лопасти колеса. А оно зависит еще от веса и плотности атмосферы.

Альтернативные энергетики давно учитывают соотношение, определяющее, что удвоение давления ветра увеличивает в восемь раз вырабатываемую ветрогенератором мощность.

Как влияет зона турбулентности

Работу ветряка, расположенного на небольшой высоте, может значительно осложнять зона турбулентности, которая зависит не только от рельефа местности и формы возвышенности, но и от скорости перемещения воздушных масс.

Молниезащита ветрогенератора

Работающая крыльчатка постоянно трется о воздух, накапливая статическое электричество, как и фюзеляж любого самолета во время полета. Авиаконструкторы успешно решают этот вопрос различными способами.

Промышленные ветрогенераторы тоже снабжены действенной защитой от молнии, разряды которой могут возникнуть в любой момент грозоопасного периода.

Большинство же владельцев частных домов даже не задумывается об этой проблеме, а зря. В лучшем случае у отдельных хозяев можно встретить УЗИП в вводном электрощите, чего явно не достаточно.

Подняв над крышей своего жилища железную конструкцию, которая к тому же вырабатывает электрическое напряжение, они уже создали отличный молниеприемник. Он будет надежно притягивать на себя огромные токи атмосферных разрядов.

Читайте также:  Декорирование мебели кожей своими руками

Если не обеспечить действенный путь их отвода мимо здания на потенциал земли, то придется постоянно испытывать судьбу, подвергать себя неожиданной опасности.

Как лукавят производители ветряков

Окончательные испытания заводские модели проходят в аэродинамической трубе при идеальной ламинарности потока с равномерной структурой его направленности и высокой плотности.

В реальных условиях частного дома таких условий просто нет. Они больше подходят для движения воздушных масс у промышленных установок, расположенных на большой высоте.

Для самодельных ветрогенератов, смонтированных даже на 10 метрах, условия турбулентности и слабый ветер могут сильно ограничивать раскрутку ротора.

Рельеф местности влияет на удельную мощность. Например, непосредственно под холмом она резко снижается, а на его вершине создаются идеальные условия за счет сжатия аэродинамических характеристик и повышения давления.

Также будут сказываться хозяйственные застройки, деревья сада, заборы, соседние здания.

Ветряки для дома своими руками: обзор конструкций

Как вы уже поняли, самая первая часть, которая воспринимает энергию ветра — это ветряное колесо. Без него не обходится ни одна схема ветряка для дома.

Его можно выполнить:

  • с вертикальной осью вращения;
  • или горизонтальной.

Вертикальный ветрогенератор

Покажу фотографией одну из легких для изготовления конструкций, сделанную из обычной стальной бочки.

Вот такой вертикальный ветрогенератор, изготовленный своими руками, да еще расположенный над самой землей в окружении застроек и растений, не сможет развить нормальных оборотов для выработки достаточного количества электроэнергии, чтобы питать частный дом.

Он сможет выполнять только какие-то единичные задачи для маломощного оборудования. Причем небольшая скорость вращения его ротора потребует обязательного использования повышающего редуктора, а это дополнительные потери энергии.

Такие конструкции были популярны в начале прошлого века на пароходах. Водяное колесо, расположенное своими лопастями вдоль направления движения судна, обеспечивало его движение.

Сейчас это раритет, утративший свою актуальность. В авиации такая конструкция не то что не прижилась, а даже не рассматривалась.

Ротор Онипко

Из тихоходных конструкций ветряных колес сейчас через интернет массово распространяют ротор Онипко. Рекламщики показывают его вращение даже при очень слабом ветре.

Однако к этой разработке у меня почему-то тоже критическое отношение, хотя повторить ее своими руками не так уж и сложно. Восторженных отзывов среди покупателей не нашел, как и научных расчетов экономической целесообразности ее использования.

Если кто-то из читателей сможет меня разубедить в этом мнении, то буду признателен.

Горизонтальный ветрогенератор

С самого начала двигатели самолетов стали применять винт, прогоняющий поток воздуха вдоль корпуса самолета. Его форму и конструкцию выбирают так, чтобы использовать дополнительно к активной силе давления реактивную составляющую.

По этому принципу работает любой горизонтальный ветрогенератор, который делают промышленным способом или своими руками. Пример самодельной конструкции показываю фотографией.

По принципу использования энергии ветра это более эффективная конструкция, а по исполнению для обеспечения бытовых вопросов снабжения электроэнергией — маломощная.

Небольшой электродвигатель, ротор которого раскручивает ветряк, может даже при оптимальном давлении и силе ветра, выработать в качестве генератора только малую мощность. На нее можно подключить слабенькую светодиодную лампочку.

Подумайте сами, нужно ли собирать такой флюгер с подсветкой или не стоит. С другими задачи подобная конструкция не справится. Хотя ее еще можно использовать для отпугивания кротов на участке. Они очень не любят шумы, сопровождаемые вращением металлических частей.

Для того, чтобы полноценно пользоваться электроэнергией, получаемой от ветра, рабочее колесо ветрогенератора должно иметь соответствующие потребляемой мощности размеры. Рассчитывайте примерно на пятиметровый диаметр.

При его создании вы столкнетесь с технической трудностью: вам придется точно выдержать балансировку больших деталей. Центр масс должен постоянно находиться в средней точке оси вращения.

Это сведет к минимуму биения подшипников и раскачивание конструкции, расположенной на большой высоте. Однако выполнить подобную балансировку не так уж просто.

Как установить ветрогенератор: надежная схема мачты для крепления на высоте

Вес рабочего колеса для нормального получения электрической энергии получается довольно приличным. На простой стойке его не установить.

Потребуется создавать прочный бетонный фундамент под металлическую мачту и анкерные болты оттяжек. Иначе вся собранная с большим трудом конструкция может рухнуть в любой неподходящий момент времени.

Стойка для ветрогенератора, поднятого на высоту, может быть выполнена:

  1. в виде сборной мачты, собранной из секций с раскосами;
  2. или конусной трубчатой опорой.

Обе схемы потребуют усиления от опрокидывания за счет создания нескольких ярусов оттяжек из тросов, которые необходимы для удержания мачты при шквальных порывах ветра. Их придется надежно крепить к стопорам и анкерам.

Современное цифровое телевидение, к счастью, требует использования антенн значительно меньших размеров. Их не только просто делать своими руками, но и крепить не так уж сложно.

Как сделать мачту для ветряка

Сразу обратите внимание на создание прочной, безаварийной конструкции. Иначе просто повторите печальный опыт работников «ЯнтарьЭнерго», у которых во время шторма произошла авария: многотонная мачта рухнула, а осколки от лопастей разлетелись по всей округе.

Устройство мачты потребует расчета количества материалов, необходимых для создания сооружения из стального уголка различного сечения. Форма и габариты выбираются по местным условиям.

Ее делают из трех или четырех вертикальных стоек. Каждая из них снизу монтируется на упор. Вверху мачты создается площадка для установки ветряка.

Поскольку длина уголков ограничена, то мачту собирают из нескольких секций. Жесткость общему креплению придают боковые ребра, крепящиеся через раскосы.

Обязательным элементом фундамента являются закладные металлические элементы. Они будут использоваться для крепежа деталей. Придется позаботиться о сварке и соединительных болтах.

Не стоит пренебрегать дополнительными оттяжками.

Как сделать опору из труб

Телескопическую конструкцию из стальных труб соответствующего профиля собрать проще, но ее следует более тщательно рассчитать на прочность. Изгибающий момент, создаваемый тяжелой верхушкой при штормовом ветре не должен превысить критического значения.

При этом возникнут сложности с профилактическим обслуживанием, осмотром и ремонтом собранной воздушной электростанции. Если по мачте можно подняться на высоту как по лестнице, то по трубе это сделать проблематично. Да и работать наверху очень опасно.

Поэтому сразу необходимо продумать вариант безопасного опускания оборудования на землю и доступного способа его подъема. Это позволяет выполнить одна из двух схем с:

  1. Поворотной осью на основной опоре.
  2. Упорным рычагом на нижней части опорной стойки.

В первом случае создается прочный фундамент для установки основной опоры. На ее оси вращения крепится сваренная трубная конструкция с ветряком и полиспастной системой на стальных тросах.

Снизу трубы расположен противовес, облегчающий работу по подъему и опусканию с помощью ручной лебедки.

На картинке не показаны страховочные тросы поясов оттяжек. Они просто свисают со своих креплений вниз на землю при подъеме и опускании мачты, а к стационарным забетонированным кольям крепятся для постоянной работы.

Схема установки и опускания ветряка по второму варианту приведена ниже.

Мачту и расположенный под прямым углом к ней упорный рычаг с противовесом, усиленный ребром жесткости, поворачивают в вертикальном направлении лебедкой с полиспастной системой.

Ось вращения созданной конструкции находится в вершине прямого угла и закреплена в направляющих, вмонтированных в фундамент. Троса оттяжек при подъеме или опускании мачты снимают со стационарных креплений на земле. Они могут использоваться в качестве страховочных фал.

Ветрогенератор: устройство и принцип работы электрической схемы простыми словами

Промышленные ветряные электростанции спроектированы так, что способны сразу выдавать электрическую энергию в сеть потребителям. Своими руками так сделать не получится.

При выборе генератора, который будет раскручивать ветряное колесо, используют принцип обратимости электрических машин. К электродвигателю прикладывают крутящий момент и обеспечивают возбуждение обмоток статора.

Однако, идея раскручивать ротор трехфазного асинхронного электродвигателя в качестве генератора для получения электрического тока напряжением 220/380 вольт реализуется от двигателей внутреннего сгорания, напора воды, но не ветра.

Читайте также:  Как сделать раствор для диффузора своими руками

Общая конструкция генератора с ротором станет иметь большой вес, а иначе обеспечить высокие обороты вала не получится.

Для небольших мощностей можно:

  • использовать автомобильный генератор, который выдает 12/24 вольта;
  • применить мотор колесо от электробайка;
  • собрать
    конструкцию из неодимовых магнитов с катушками из медной проволоки.

Также за основу можно взять ветряк, продаваемый в Китае. Но ему необходимо сразу провести ревизию: обратить внимание на качество монтажа обмоток, состояние подшипников, прочность лопастей, общую балансировку ротора.

Придется настроиться на то, что величина выходного напряжения генератора будет сильно меняться в зависимости от скорости ветра. Поэтому в качестве промежуточного звена используют аккумуляторы.

Их зарядку необходимо возложить на контроллер.

Бытовые приборы сети 220 вольт должны питаться переменным током от специального преобразователя — инвертора. Простейшая схема домашней ветряной электростанции имеет следующий вид.

Ее можно значительно упростить потому, что бытовая цифровая электроника: компьютеры, телевизоры, телефоны работают от постоянного тока блоков питания 12 вольт.

Поэтому рекомендую сделать отдельные розетки на 12 вольт, запитать их сразу от аккумуляторов.

Внутри электрической схемы придется соблюдать такой же баланс мощностей, как и в механической конструкции. Каждая подключенная нагрузка должна соответствовать энергетическим характеристикам вышестоящего источника.

Бытовые приборы 220 вольт не должны перегружать инвертор. Иначе он будет отключаться от встроенной защиты, а при ее неисправности просто сгорит. По этому же принципу работают аккумуляторные батареи, силовые контакты контроллера, да и сам генератор.

Защита автоматическим выключателем домашней ветряной установки должна быть выполнена в обязательном порядке.

Случайную перегрузку, а тем более появление тока короткого замыкания предусмотреть невозможно. Поэтому этот модуль обязательно устанавливают в качестве основной защиты.

Схема подключения аккумуляторов, инвертора и контроллера для ветрогенератора практически ничем не отличается от той, что используется на гелиостанциях со световыми панелями.

Поэтому сразу напрашивается разумный вывод: собирать комбинированную домашнюю электростанцию, работающую от энергии ветра и солнца одновременно. Эти два источника вместе хорошо дополняют друг друга, а затраты на сборку одиночных станций значительно снижаются.

На Ютубе очень много каналов посвящено ветрогенераторам для дома. Мне понравилась работа владельца «Солнечные батареи». Считаю, что он довольно объективен при изложении этой темы. Поэтому рекомендую внимательно посмотреть.

Аккумуляторы для ветрогенератора: еще одна проблема для владельца дома

Одна из затратных задач ветряной или солнечной электростанции — вопрос хранения электрической энергии, которую решают только аккумуляторы. Их придется покупать и обновлять, а стоимость — довольно высокая.

Для их выбора необходимо знать рабочие характеристики: напряжение и емкость. Обычно применяются составные батареи из АКБ на 12 V, а количество ампер-часов в каждом конкретном случае стоит определить опытным путем, исходя из мощности потребителей, времени их работы.

Выбирать аккумуляторы для ветрогенератора придется из довольно широкого ассортимента. Ограничусь не полным обзором, а только четырьмя
популярными типами кислотных АКБ:

  1. обычные стартерный автомобильные;
  2. AGM типа;
  3. гелевые;
  4. панцирные.

Продавцы не рекомендуют приобретать для ветростанций стартерные аккумуляторы потому, что они созданы для работы в критических условиях эксплуатации автомобиля:

  • при хранении на морозе должны выдерживать огромные токи стартера, которые создаются при раскрутке холодного двигателя;
  • во время езды подвергаются вибрациям и тряске;
  • подзарядка происходит в буферном режиме от генератора
    при движении авто с различными оборотами двигателя.
  • обслуживаемые АКБ, требующие периодического уровня электролита и доливки дистиллированной воды, созданы для выдерживания 100 циклов разряд/заряд;
  • не обслуживаемые — имеют более сложную конструкцию и количество циклов 200.

Однако АКБ ветрогенератора при эксплуатации внутри дома:

  • обычно помещаются в подвальном помещении, где температура, круглогодично поддерживаемая на уровне +5÷+10 градусов, является оптимальной;
  • не подвергаются тряскам и вибрациям, стационарно
    установлены в неподвижном состоянии;
  • не получают экстремальные нагрузки при стартерном запуске, а при включении бытовых приборов через инвертор работают в щадящем режиме;
  • заряжаются от генератора небольшими токами, которые благоприятно действуют на режим десульфатации пластин.

Все это является самыми выгодными условиями для их эксплуатации. Поэтому этот вариант предлагаю взять на заметку тем, кому не лень периодически контролировать напряжение на банках и следить за уровнем
электролита в них.

AGM аккумуляторы более сложные по устройству. У них такие же пластины, но кислотой пропитаны стеклянные маты, работающие одновременно диэлектрическим слоем. Их цикл разряда/заряда — 250÷400. Перезаряд опасен.

Голевые АКБ тоже создаются необслуживаемой конструкцией с герметичным корпусом и загущенным до состояния геля электролитом. Они очень не любят перезаряд, но более стойки к глубокому разряду. Число расчетных циклов —350.

Панцирные аккумуляторы относятся к самым современным разработкам. Их электродные пластины защищены полимерами от воздействия кислоты. Диапазон циклов эксплуатации: 900÷1500.

Все эти четыре типа АКБ значительно отличаются по цене и условиям эксплуатации. Если взять во внимание рекомендации продавцов, то придется выложить довольно приличную сумму денег.

Однако я вам рекомендую предварительно послушать полезные советы, которые дает в своем видеоролике «Как выбрать аккумуляторы для ВЭС и солнечной станции» все тот же владелец «Солнечные батареи».

У него на этот счет свое, противоположное мнение. Как вы отнесетесь к нему — ваше личное дело. Однако, знать информацию из противоположных источников и выбрать из нее наиболее подходящий вариант: оптимальное решение для думающего человека.

Как рассчитать экономический эффект: цена ветрогенератора

Одним из маркетинговых ходов продавцов являются прайс листы,
показывающие расчеты экономии покупателей, создаваемой за счет приобретения их продукции. Стоит ли им верить?

Я предлагаю вам самостоятельно оценить экономическую выгоду от установки ветряной электростанции на вашем участке. Для этого потребуется учесть минимум расход денег на:

  1. возведение фундамента под мачту, на который пойдет немало бетона и металлический арматуры;
  2. создание высотной опоры для установки
    ветроколеса в зоне благоприятного давления ветра. Сюда войдут не только
    металлические уголки, трубы и крепежные детали со сваркой, но и затраты на весь монтаж;
  3. цену приобретения готового ветрогенератора или
    его изготовление в домашних условиях;
  4. покупку инвертора, контроллера, аккумуляторов, защитных модулей, кабелей и проводов. Учтите, что лет за 10-12 комплект АКБ придется сменить несколько раз;
  5. эксплуатационные расходы на профилактическое обслуживание и ремонт;
  6. решение ряда организационных вопросов.

Практика использования ветряных станций показала, что тихо они не работают, а постоянные вибрации и шумы ветрогенератора раздражают ближайших соседей. Иногда придется решать вопросы через суд.

К тому же в область вращающегося колеса иногда попадают птицы: пластиковые лопасти ломаются, металлические гнутся. Требуется надежная защита и резервный комплект запасных частей.

Можно даже допустить, что лет 10 все будет работать надежно и эффективно, хотя про скорость ветра я объяснил довольно подробно в самом
начале статьи.

Когда рассчитаете все эти затраты (сделайте поправку на часть непредвиденных расходов), то прикиньте цену 1 киловатта электроэнергии, которую вы платите по счетчику сейчас.

Умножьте ее на то количество киловатт, на которое создаете ветряную станцию, например на 3. Дальше останется определить период времени для сравнения.

Возьмем за основу время, за которое предварительно планируете окупить свои затраты, например, 15 лет эксплуатации. Оплату 3 кВТ в час надо умножить на этот срок, выраженный в часах, и сравнить со стоимостью затрат на создание и эксплуатацию ВЭС за этот же период.

Оценка очень приблизительная, цены плавают, но расчет для моего случая показал, что проще оплачивать электроэнергию государству. Затраты будут ниже в 4 раза.

Считаю, что ветрогенератор для частного дома своим руками создать можно. Примеров его работы много. Однако, надо хорошо продумать целесообразность его использования, обосновать экономическую пользу.

Без точного предварительного расчета деньги на его создание в прямом смысле могут быть пущены на ветер и не принесут никакой выгоды владельцу. Если я ошибся в прогнозах, то поправьте в комментариях.

Учтите, что ваш опыт интересует не только меня, но и большое количество других людей. Он принесет пользу и им.

Источник

Оцените статью