- ESR (ЭПС) измеритель — приставка к цифровому мультиметру
- Содержание / Contents
- ↑ Начало
- ↑ Мой вариант схемы измерителя ESR
- ↑ Наладка
- ↑ К вопросу о точности вообще
- ↑ Моя печатная плата
- ↑ Итого
- ↑ Файлы
- Камрад, рассмотри датагорские рекомендации
- 🌼 Полезные и проверенные железяки, можно брать
- Простой ESR (ЭПС) измеритель быстрого приготовления
- Камрад, рассмотри датагорские рекомендации
- 🌼 Полезные и проверенные железяки, можно брать
- Измеритель емкости и ESR
- Настройка ESR
ESR (ЭПС) измеритель — приставка к цифровому мультиметру
Содержание / Contents
↑ Начало
↑ Мой вариант схемы измерителя ESR
Я внес минимальные изменения. Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N, транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.
Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.
Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 — перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.
↑ Наладка
Наладка очень проста и заключается в установке чувствительности с помощью R4 при подключенном резисторе 2…5 Ом и установке нуля цифрового вольтметра на диапазоне 200mV.
Операции надо повторить несколько раз, далее можно убедиться в точности измерителя, подключая резисторы 0,1…5 Ом. Настраивать надо со штатными шнурами, плату хорошенько промыть, конденсатор С3 должен быть термостабилен.
↑ К вопросу о точности вообще
Начиная с 10 Ом, точность примерно 3% и ухудшается примерно до 6% при 20 Ом (200мВ), но точность при измерениях бракованных элементов не важна. Поскольку измерения проводятся при комнатной температуре, термонестабильность будет мала, испытаний на эту тему я не проводил.
При измерениях ESR конденсаторов в компьютерных блоках питания и на материнских платах, я пришел к выводу, что конденсаторы от 1000 мкФ с сопротивлением 0,5 Ом надо срочно выпаивать и отправлять в ведро, нормальное ESR 0,02…0,05 Ом. Попутно обнаружил, что у исправных конденсаторов ESR очень сильно зависит от температуры, так у конденсатора 22 мкФ ESR уменьшалась от тепла пальцев на 10%. Это объясняет, почему некоторые фанатичные лампадные конструкторы специально делают подогрев конденсаторов в катодных цепях с помощью проволочных обогревателей. По этой причине, а также по причине имеющегося сопротивления контактов считаю, что в измерения тысячных долей Ом нет особой необходимости.
На первом фото ЭПС конденсатора 0,03 Ом.
Желающие подробнее ознакомиться с принципом работы данного устройства могут прочитать оригинальную статью на стр. 19, 20 «Радио» №8 за 2011 год.
↑ Моя печатная плата
↑ Итого
Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens.
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.
Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.
↑ Файлы
Печатная плата:
▼ esr.rar 14,22 Kb ⇣ 686
Оригинальная статья в журнале «Радио» № 8 за 2011 год:
▼ radio-8-2011-esr-meter.7z 1,09 Mb ⇣ 72
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Источник
Простой ESR (ЭПС) измеритель быстрого приготовления
ESR-метр или прибор для измерения ЭПС — эквивалентного последовательного сопротивления.
Как выяснилось, работоспособность (электролитических — частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.
Величина ЭПС в какой-то степени связана с основным параметром конденсатора — емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.
В технической литературе и на страничках технических сайтов описано немало случаев полной неработоспособности устройств из-за завышенной величины ЭПС электролитических конденсаторов.
В различных электронно-технических журналах и страничках сайтов, посвященных электронике, приводятся схемы приборов различной сложности и функциональности для определения величины ЭПС конденсаторов.
В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ — одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание. В трансформаторе Т1 используется лишь половинка обмотки.
Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.
Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.
Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.
Удачи!
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Источник
Измеритель емкости и ESR
В наше время, когда, практически, все источники питания радиоэлектронной аппаратуры строятся по импульсным схемам, одним из наиболее востребованных приборов ремонтника есть измеритель ESR электролитических конденсаторов или ESR метр. Долгое время я проверял исправность таких конденсаторов цифровым измерителем ёмкости, заряжающим конденсаторы высокочастотной пилой. Но, так как этот прибор был изготовлен более 10 лет назад, на рассыпухе — мелкая логика и светодиодные индикаторы, — пользоваться таким устаревшим прибором, да ещё и без «настоящего» измерителя ЭПС, считаю сейчас даже просто морально некошерным. Поэтому, с момента освоения прошивки современных микропроцессоров, я всё время мечтал о схеме, отвечающей требованиям нашего времени — минимум деталей, современная элементная база и схемное решение, одновременное отображение значения C и ESR на LCD, никаких реле, рубильников и прочей лабуды, требующей лишних движений. И вот, наконец-то, после многих лет просмотра не одного десятка схем (и всё не то) описание такого прибора мне попалось. Журнал «Радио» №6 за 2010 год, страница 19 — в это схемотехническое и программное решение я влюбился с первого взгляда 🙂 Популярный МК ATtiny2313, LCD индикатор в две строки по восемь символов, простая и понятная измерительная часть, хорошая программная поддержка. Всё — делаю!
Но, как всегда — редко бывает такая схема, которую я повторяю 1:1, — беру в руки красную пасту, и, а-ля школьный учитель, начинаю энергично вычёркивать со схемы лишние фрагменты. Автономное питание — убираем, так как прибор будет работать в помещении от сетевого адаптера, оставляю только разъём для его подключения. Автоматическое отключение источника питания от схемы и его квазисенсорное включение — вычёркиваем — это нерациональное пижонство. Подключение к компу через СОМ-порт — убираем — какой дурак будет включать целый компьютер ради замера ёмкости одного конденсатора, что и так отображается на ЖКИ прибора; подсветку индикатора делаю постоянно включенной. Итого — схема «похудела» процентов на 25 🙂 Кроме того, после внимательного чтения описания и вникания в принцип работы измерителя была обнаружена и одна ошибка на схеме — источники тока двух поддиапазонов измерения оказались перепутаны между собой — исправляем.
Вот так и будем собирать. Ниже представлена схема ESR измерителя:
Естественно, считаю очень экстравагантным решение автора использовать на одной плате современную импортную базу одновременно с устаревшей отечественной, да ещё и с не самыми лучшими параметрами (КС133 не выдерживают никакой критики). Поэтому сразу решаю, что вместо КТ3107 буду ставить 2SA733, а стабилитроны возьму BZX 3V3 (хотя поставил BZX 3V9). ЖКИ также будет не указанный в схеме (такого найти не получилось), а более популярный WH0802А фирмы Winstar. Печатную плату развожу, руководствуясь размерами индикатора — по его ширине и высоте (высокие детали ложу горизонтально, электролиты применяю с уменьшенной высотой корпуса), регулятор контрастности в подобных устройствах я всегда распаиваю прямо на выводах самого индикатора. Таким образом, плата вышла размерами 6х6 см, монтаж по высоте равен высоте индикатора (около 1 см). Собранная плата с индикатором легко поместится в пачку от сигарет.
Настройка ESR
О, это отдельный разговор. Прочитав статью, создаётся мнение, что схему сможет настроить только инженер-программист в лаборатории с высокоточными приборами. Судите сами — автор предлагает настроить источники тока по миллиамперметру, гарантирующему точность в две цифры после запятой. Затем – делитель напряжения по вольтметру такой же точности (естественно подразумевается, что в этой точности нет ничего общего с «точностью» китайских показометров). Потом эти измеренные значения надо занести в текст неоткомпилированной программы, перегнать её в машинный код и зашить с этими поправками в МК. Нормально? Но, к счастью, автор очень подробно описал принцип работы своего устройства, почитав которое доходит, что сие чудо высокого полёта современной инженерной мысли может настроить и любой Ивашка с Дворца пионеров и даже вообще без всяких приборов. Всё, закрываем журнал и настраиваем так, как получилось у меня.
Включаем собранный прибор с прошитым и установленным на плату МК. Первым делом крутим регулятор контрастности до появления на экране ЖКИ чёткой надписи в две строки. Если её нет — проверяем монтаж в части сопряжения МК с ЖКИ и подачи питания на оба самых дорогих элемента этого устройства. А также правильность прошивки МК — не забываем про фузы – для PonyProg так:
Нажимаем на плате возле МК кнопку «Калибровка» — в прошивку внесётся поправка на скорость срабатывания входной части измерителя.
Следующий этап. Нам понадобится несколько новых электролитических конденсаторов высокого качества (не обязательно Low Esr) ёмкостью 220. 470 мкФ разных партий, лучше всего — на разные напряжения (16в, 35в, 50в. ). Подключаем любой из них к входным гнёздам прибора и начинаем подбирать резистор R2 в пределах 100. 470 Ом (у меня получилось 300 Ом; можно применить временно цепочку постоянный+подстроечный) так, чтобы значение ёмкости на экране ЖКИ примерно было похоже на номинал конденсатора. К большой точности пока что стремиться не стОит — ещё будет корректироваться; затем проверить и с другими конденсаторами.
Дальше настраиваем измеритель ESR. Эх, придётся снова раскрыть журнал «Радио» — №7 за 2010 год стр.22 — там имеется табличка с типовыми значениями этого параметра для разных конденсаторов. Или же воспользоваться вот этой, найденной на бескрайних просторах Интернета. Кстати, такую табличку, при желании, можно будет приклеить в качестве шпаргалки на корпус будущего прибора под дисплеем. Как пользоваться такой табличкой, я думаю, понятно — скажем, получается, что типовое ЭПС конденсатора 100 мкФ на 35в находится где-то в районе 0,32 Ом:
В следующей табличке указаны максимальные значения ЭПС для электролитических конденсаторов. Если у измеряемого конденсатора оно будет заметно выше, то его уже нельзя использовать для работы в сглаживающем фильтре выпрямителя:
Подключаем конденсатор 220 мкФ и, незначительным подбором сопротивления резисторов R6, R9, R10 (на схеме и на моём сборочном чертеже обозначены со звёздочками), добиваемся показаний Esr, близких к табличным. Проверяем на всех имеющихся заготовленных эталонных конденсаторах, в т.ч. уже можно использовать и конденсаторы от 1 до 100 мкФ (не обращая пока что внимания на показания измерителя ёмкости).
Так как для измерения ёмкости конденсаторов от 150 мкФ и для измерителя ЭПС применяется один и тот же участок схемы, после подбора сопротивления этих резисторов несколько изменится точность показаний измерителя ёмкости. Теперь можно подстроить ещё сопротивление резистора R2, чтобы эти показания стали точнее. Другими словами, Ваша задача — подбирая сопротивление R2 — уточнить показания измерителя ёмкости, подстраивая резисторы в делителе компараторов — уточнить показания ESR-метра. Причём, приоритет надо отдавать измерителю ESR. О больших же ёмкостях — я думаю, каждый понимает, что если в аппарате установлен конденсатор на 1000 мкФ, то он будет работать хоть при ёмкости 950 мкФ, хоть при ёмкости 1100 мкФ — поэтому уделять внимание особой точности измерению ёмкости таких конденсаторов вряд ли целесообразно.
Тут может возникнуть вопрос — а нельзя ли вообще сразу и очень точно настроить измеритель ESR, подключая к его входу низкоомные высокоточные резисторы, калибруя прибор по ним? Нет, как раз это не тот случай — так можно настроить разного рода простые аналоговые измерители ЭПС, представляющие собой, грубо говоря, омметры «с наворотами». В этом же приборе используется способ измерения, основан на зарядке конденсатора током, — резистор же, понятное дело, заряжаться не может
Осталось настроить измеритель ёмкости конденсаторов диапазона 0,1. 150 мкФ. Так как для этого в схеме предусмотрен отдельный источник тока, измерение ёмкости таких конденсаторов можно сделать очень точным. Подключаем конденсаторы малой ёмкости к входным гнёздам прибора и, подбором сопротивления R1 в пределах 3,3. 6,8 кОм (у меня получилось 4,3к) добиваемся максимально точных показаний. Этого можно достичь, если в качестве эталонных применить не электролиты, а высокоточные конденсаторы К71-1 ёмкостью 0,15 мкФ с гарантированным отклонением 0,5 или 1%, подключая их как по одному, так и параллельными «батареями».
На этом настройка прибора закончена, можно поместить его в корпус и использовать по назначению
Ниже вы можете скачать печатную плату в формате LAY, сборочный чертеж и прошивку
DesAlex, исходная версия измерителя: Радио — №7, 2010г.
Источник