- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Как сделать батарейку 9 В своими руками
- Изготовление простейшего гальванического элемента
- Принцип действия
- История развития конструкции элемента Вольта
- Вторая половина девятнадцатого века
- Современность
- Изготовление долгосрочного элемента питания для портативных устройств
- Необходимые материалы
- Сборка конструкции химического источника электроэнергии
- Технология изготовления альтернативного источника питания
- Вольтов столб принцип работы
- Общая информация
- История открытия химического электричества
- Вольтов столб
- Принцип действия
- История развития конструкции элемента Вольта
- Вторая половина девятнадцатого века
- Современность
- Изготовление долгосрочного элемента питания для портативных устройств
- Необходимые материалы
- Сборка конструкции химического источника электроэнергии
- Технология изготовления альтернативного источника питания
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Как сделать батарейку 9 В своими руками
Вольтов столб представлял собой первую в мире гальваническую батарею, которая была немного больше, чем серебряные и цинковые диски, разделенные бумагой, пропитанной соленой водой. Зачастую в учебных классах проводится эксперимент по сборке такого столба из кучи медных монет, оловянной фольги и уксуса или лимонного сока.
Энтузиаст Omars2 имеет другой подход к этому старому эксперименту. Он разработал методику создания батарейки на напряжение 9 В с использованием некоторого количества винтов из цинка, медной проволоки и соленой воды.
Поршень шприца в данном случае служит в качестве подложки для гальванических ячеек, и каждая ячейка представляет собой только винт с обернутой вокруг него бумагой. При этом после его обворачивания бумагой на него наматывают медную проволоку, всего получается 35 витков. Батарея пропитана соленой водой, впрочем, скорее всего, уксус или лимонный сок будут работать еще лучше. Нагревание электролита также является хорошей идеей.
Принцип действия такой самодельной батареи довольно прост. Соль растворяется в положительно заряженных ионах натрия и отрицательно заряженных атомах хлора с образованием электролита. Катод отдает электроны в раствор, оставляя его положительным. Другой электрод, носящий название анод, собирает электроны, поэтому он имеет только отрицательный заряд. Разница между величинами зарядов на двух электродах создает разность потенциалов, то есть напряжение. Когда вы замыкаете контур, электроны перетекают из анода обратно в катод, вызывая протекание электрического тока.
Собрав такую батарею и подключив к ней мультиеметр, можно ожидать, что показание напряжения будет в районе от 7 В до 9 В постоянного тока, если все, конечно, было сделано правильно. После этого к такой батареи можно подключить некоторую нагрузку, например, лампочку,, и она должна работать нормально. Чтобы зарядить эту батарею, вам понадобится мультиметр, чтобы определить полярность этой батареи, а затем вам потребуется использовать 9-вольтовый адаптер постоянного тока для зарядки. Выход должен быть где-то около 0.30 — 0.40 A.
Процесс создания батареи 9V показан на видео ниже.
Если вы предпочтете сделать эту версию с монетами, то следите за тем, чтобы они все содержали большое количество меди. В противном случае такая батарея либо будет работать слабо, либо не будет работать совсем. При отсутствии медных монет вам понадобится другой металлический материал, например, оловянная фольга.
Источник
Изготовление простейшего гальванического элемента
Вольтов столб был изобретён таким известным учёным из Италии, как Алессандр Вольт. Он провел первые испытания химического источника тока еще в 1800 году. Его назвали элементом Вольта. Он представлял собой сосуд с подсоленной водой и опущенными в неё цинковыми и медными пластинами, которые соединялись проволокой. Потом учёный собрал целую батарею из таких элементов, которая позже была названа Вольтовым столбом. Вольтов столб своими руками могли сделать любые испытатели и с успехом применяли его.
Принцип действия
Наипростейший медно-цинковый столб собирается из 2 электродных пластин, расположенных в растворе электролита. В этом случае, погружая электролит в пространство между металлами, Вы создаете разницу потенциалов.
Для создания более высокого напряжения или мощности этих элементов заводские батарейки делают в виде последовательно соединённых, количество увеличивают до того, как получат нужное напряжение.
Заводская схема конструкции
История развития конструкции элемента Вольта
Открытие получило развитие в использовании учёных из других стран, которые его успешно применяли в своих исследованиях. К примеру, в 1802 году академик из России Петров собрал батарею — Вольтов столб из 2,1 тыс. элементов, которая обеспечивала электрическую дугу.
В дальнейшем, в 1836 году, химик Дж. Дэниель английского происхождения модернизировал элемент Вольта за счет того, что поместил электроды из цинка и меди в раствор из серной кислоты. Такую конструкцию прозвали как устройство вольтова столба.
Вторая половина девятнадцатого века
Затем в 1859 году во Франции исследователь физических явлений Гастон Планте изобрёл другой тип аккумулятора — свинцово-кислотный. Он до сих пор используется в автомобильных аккумуляторах. Но уже в 1865 году Ж. Лекланше изобрел свой гальванический элемент, который назвали элемент Лекланше. Он состоял из цинкового стакана, который был заполнен раствором водного хлористого аммония или другой соли хлора. В него помещали агломерат из оксида (IV)марганца с формулой — MnO2 с угольным токоотводом.
Модификация этой конструкции может использоваться и в современных солевых батарейках в различных бытовых устройствах. В это время в 1890 году в городе Нью-Йорк исследователь Конрад Губерт, который иммигрировал из России, создал 1-й электрический фонарик. Далее компания National Carbon в 1896 году начинает массовое производство первых сухих элементов имени Лекланше «Columbia» в мире. Самый наибольшее прослужившее гальваническое устройство на серно-цинковой батарее – накопитель, изготовленный в Лондоне во второй половине 19-го года. Он был подключён к звонку и до сих пор работает.
Стандартная схема простейшей батарейки
Современность
Портативной технике, которой пользуется человек сегодня, необходимо напряжение как минимум в 3,6 вольта (но лучше — 4,5). Для получения такого показателя рекомендуется использовать 4-5 выше описанных элементов, соединенных последовательно. Когда соединяют 5 литровых (объём электролита) элементов, то добиваются показателя в 3,5-4,6 вольт, при чем ёмкость возрастает до 45-50 ампер в час. Если разряд тока достигнет 400-600 миллиампер в час, то Вы сможете питать такой батарейкой небольшой радиоприемник или фонарик светодиодного типа. Также можно обеспечить зарядкой миниатюрный аккумулятор телефона до 10-20 часов, но питание современных телефонов и гаджетов потребует более серьезных источников.
Изготовление долгосрочного элемента питания для портативных устройств
Необходимые материалы
Чтобы самостоятельно сделать вольтов столб (химический источник электроэнергии), Вам понадобится:
- ёмкость побольше, например, объемом 40-50 литров (это минимум для стабильного питания портативных светодиодных лампочек и другой техники).
- пять медных пластин 20/40;
- пять цинковых пластин 20/40;
- любая соль.
На подготовительном этапе каждую пластинку припаивают или запрессовывают, загибая уголки пластин. Затем вставляют проводок и заплющивают молотком.
Сборка конструкции химического источника электроэнергии
Закрепите между собой пластины через электронопроводящие прокладки. Для этого подойдут деревянные брусочки или пластмассовые трубки. Опустите столб пластин в ёмкость с электролитом (раствор поваренной соли, нашатыря или серной кислоты — автоэлектролит). Кислоту добавляют порциями и периодически проверяют плотность раствора аэрометром. Необходимо добиться, чтобы она составляла 1,21-1,31 грамм на см3 – это приблизительно 280-300 г кислоты.
Модель одного элемента
Далее соедините получившиеся батарейки: медные пластины одного проводком соедините с цинковой полоской второго элемента. Таким образом, у Вас получится с одной стороны блока — медная полоска закреплена с проводом (+ положительная), а с противоположной — цинковая (отрицательная). Эффективность такого источника можно повысить за счет увеличения площади пластин, или использования более сильного электролита (серной кислоты).
Технология изготовления альтернативного источника питания
Источник
Вольтов столб принцип работы
Гальванический элемент – это источник электрической энергии, принцип действия основан на химических реакциях. Большинство современных батареек и аккумуляторов подпадает под определение и относится к рассматриваемой категории. Физически гальванический элемент состоит из проводящих электродов, погруженных в одну или две жидкости (электролиты).
Общая информация
Гальванические элементы делятся на первичные и вторичные в соответствии со способностью вырабатывать электрический ток. Оба вида считаются источниками и служат для различных целей. Первые вырабатывают ток в ходе химической реакции, вторые функционируют исключительно после зарядки. Ниже обсудим обе разновидности. По количеству жидкостей различают две группы гальванических элементов:
- Ярким примером приборов с единственной жидкостью считаются вольтов столб (1800 год) и элемент Волластона, которым пользовался первоначально Георг Ом в собственных исследованиях. Он состоял из медных пластин, свёрнутых в полые цилиндрической форму поверхности: первая вставлена во вторую. Обе ограждены от соприкосновения при помощи деревянных распорок. Электролитом служит разбавленная серная кислота. В результате происходит удвоение рабочих поверхностей. В ходе реакции образуется сульфат меди с выделением водорода, а цинк окисляется. В батарейках один электрод обычно угольный.
Источник электрической энергии
Непостоянство источников питания с единственной жидкостью заметил Ом, открыв неприемлемость гальванического элемента Волластона для экспериментов по исследованию электричества. Динамика процесса такова, что в начальный момент времени ток велик и вначале растёт, потом за несколько часов падает до среднего значения. Современные аккумуляторы капризны.
История открытия химического электричества
Мало известен факт, что в 1752 году гальваническое электричество упоминалось Иоганном Георгом. Издание Исследование происхождения приятных и неприятных ощущений, выпущенное Берлинской академией наук, даже придавало явлению вполне правильное толкование. Опыт: серебряную и свинцовую пластины соединяли с одного конца, а противоположные с разных сторон прикладывались к языку. На рецепторах наблюдается вкус железного купороса. Читатели уже догадались, описанный способ проверки батареек часто использовали в СССР.
Объяснение явления: видимо, имеются некие частицы металла, раздражающие рецепторы языка. Частицы испускаются одной пластиной при соприкосновении. Причём один металл при этом растворяется. Собственно, налицо принцип действия гальванического элемента, где цинковая пластина постепенно исчезает, отдавая энергию химических связей электрическому току. Объяснение сделано за полвека до официального доклада Королевскому обществу Лондона Алессандро Вольта об открытии первого источника питания. Но, как происходит часто с открытиями, к примеру, электромагнитным взаимодействием, опыт остался незамечен широкой научной общественностью и не исследован должным образом.
Добавим, это оказалось связано с недавней отменой преследования за колдовство: немногие решались после печального опыта «ведьм» на изучение непонятных явлений. Иначе обстояло дело с Луиджи Гальвани, с 1775 года работающим на кафедре анатомии в Болонье. Его специализаций считались раздражители нервной системы, но светило оставил значимый след не в области физиологии. Ученик Беккарии активно занимался электричеством. Во второй половине 1780 года, как следует из воспоминаний учёного (1791, De Viribus Electricitatis in Motu Muscylary: Commentarii Bononiensi, том 7, стр. 363), в очередной раз производилось препарирование лягушки (опыты и потом длились долгие годы).
Примечательно, что необычное явление подмечено ассистентом, в точности, как с отклонением стрелки компаса проводом с электрическим током: открытие сделали лишь косвенно связанные с научными исследованиями люди. Наблюдение касалось подергиваний нижних конечностей лягушки. В ходе опыта ассистент задел внутренний бедренный нерв препарируемого животного, ножки дёрнулись. Рядом, на столе стоял электростатический генератор, на приборе проскочила искра. Луиджи Гальвани немедленно загорелся идеей повторить опыт. Что удалось. И опять на машине проскочила искра.
Опыты Луиджи Гальвани
Образовалась параллель связи с электричеством, и Гальвани возжелал узнать, станет ли на лягушку действовать подобным образом гроза. Оказалось, что природные катаклизмы не оказывают заметного воздействия. Лягушки, прикреплённые медными крючками за спинной мозг к железной ограде, дёргались вне зависимости от погодных условий. Опыты не удавалось реализовать со 100-процентной повторяемостью, атмосфера воздействия не оказывала. В итоге Гальвани нашёл сонм пар, составленных из разных металлов, которые при соприкосновении между собой и нервом вызывали подёргивание лапок у лягушки. Сегодня явление объясняют различной степенью электроотрицательности материалов. К примеру, известно, что нельзя алюминиевые пластины клепать медью, металлы составляют гальваническую пару с ярко выраженными свойствами.
Гальвани справедливо заметил, что образуется замкнутая электрическая цепь, предположил, что лягушка содержит животное электричество, разряжаемое подобно лейденской банке. Алессандро Вольта не принял объяснения. Внимательно изучив описание экспериментов, Вольта выдвинул объяснение, что ток возникает при объединении двух металлов, непосредственно или через электролит тела биологического существа. Причина возникновения тока кроется в материалах, а лягушка служит простым индикатором явления. Цитата Вольты из письма, адресованного редактору научного журнала:
Проводники первого рода (твёрдые тела) и второго рода (жидкости) при соприкосновении в некоторой комбинации рождают импульс электричества, сегодня нельзя объяснить причины возникновения явления. Ток течёт по замкнутому контуру и исчезает, если целостность цепи нарушена.
Вольтов столб
Лепту в череду открытий внёс Джованни Фаброни, сообщивший, что при размещении двух пластинок гальванической пары в воду, одна начинает разрушаться. Следовательно, явление имеет отношение к химическим процессам. А Вольта тем временем изобрёл первый источник питания, долгое время служивший для исследования электричества. Учёный постоянно искал способы усиления действия гальванических пар, но не находил. В ходе опытов создана конструкция вольтова столба:
- Попарно брались цинковые и медные кружки в плотном соприкосновении друг с другом.
- Полученные пары разделялись мокрыми кружками картона и ставились друг над другом.
Легко догадаться, получилось последовательное соединение источников тока, которые суммируясь, усиливали эффект (разность потенциалов). Новый прибор вызывал при прикосновении ощутимый для руки человека удар. Подобно опытам Мушенбрука с лейденской банкой. Однако для повторения эффекта требовалось время. Стало очевидно, что источник энергии имеет химическое происхождение и постепенно возобновляется. Но привыкнуть к понятию нового электричества оказалось непросто. Вольтов столб вёл себя подобно заряженной лейденской банке, но…
Вольта организует дополнительный эксперимент. Снабжает каждый из кружков изолирующей ручкой, приводит в соприкосновение на некоторое время, потом размыкает и проводит исследование электроскопом. К тому времени уже стал известен закон Кулона, выясняется, что цинк зарядился положительно, а медь – отрицательно. Первый материал отдал электроны второму. По указанной причине цинковая пластина вольтова столба постепенно разрушается. Для изучение работы назначили комиссию, которой представили доводы Алессандро. Уже тогда путём умозаключений исследователь установил, что напряжение отдельных пар складывается.
Вольта объяснил, что без мокрых кружков, прокладываемых между металлами, конструкция ведёт себя как две пластинки: медная и цинковая. Усиления не происходит. Вольта нашёл первый ряд электроотрицательности: цинк, свинец, олово, железо, медь, серебро. И если исключить промежуточные металлы между крайними, «движущая сила» не изменяется. Вольта установил, что электричество существует, пока соприкасаются пластины: сила не видна, но легко чувствуется, следовательно, она истинна. Учёный 20 марта 1800 года пишет президенту Королевского общества Лондона сэру Джозефу Бэнксу, к которому обращался впервые и Майкл Фарадей.
Английские исследователи быстро обнаружили: если на верхнюю пластину (медь) капнуть воды, в указанной точке в районе контакта выделяется газ. Они проделали опыт с обоих сторон: провода подходящей цепи заключили в колбы с водой. Газ исследовали. Оказалось, что газ горючий, выделяется лишь с единственной стороны. С противоположной заметно окислилась проволока. Установлено, что первое является водородом, а второе явление происходит вследствие избытка кислорода. Установлено (2 мая 1800 года), что наблюдаемый процесс — разложение воды под действием электрического тока.
Уильям Крукшенк немедленно показал, что аналогичное допустимо проделать с растворами солей металлов, а Волластон окончательно доказал идентичность вольтова столба статическому электричеству. Как выразился учёный: действие слабее, но обладает большей продолжительностью. Мартин Ван Марум и Христиан Генрих Пфафф зарядили от элемента лейденскую банку. А профессор Хампфри Дэви установил, что чистая вода не может служить в этом случае электролитом. Напротив, чем сильнее жидкость способна окислять цинк, тем лучше действует вольтов столб, что вполне согласовывалось с наблюдениями Фаброни.
Кислота намного улучшает работоспособность, ускоряя процесс выработки электричества. В конце концов Дэви создал стройную теорию вольтова столба. Он пояснил, что металлы изначально обладают неким зарядом, при замыкании контактов вызывающим действие элемента. Если электролит способен окислять поверхность донора электронов, слой истощённых атомов постепенно удаляется, открывая новые слои, способные давать электричество.
В 1803 году Риттер собрал столб из чередующихся кружков серебра и мокрого сукна, прообраз первого аккумулятора. Риттер зарядил его от вольтова столба и наблюдал процесс разрядки. Правильное толкование явлению дал Алессандро Вольта. И лишь в 1825 году Огюст де ла Рив доказал, что перенос электричества в растворе осуществляется ионами вещества, наблюдая образование оксида цинка в камере с чистой водой, отделённой от соседней мембраной. Заявление помогло Берцелиусу создать физическую модель, в которой атому электролита представлялись составленными из двух противоположно заряженных полюсов (ионов), способных диссоциировать. В результате получилась стройная картина переноса электричества на расстояние.
Вольтов столб это прибор, который был изобретен известным итальянским физиком Алессандро Вольта в 1799 году
Википедия о приборе Вольтов столб
Вот, что пишет народная энциклопедия о Вольтовом столбе.
Цитата:
Так был изобретён «элемент Вольта» — первый гальванический элемент. Для удобства Вольта придал ему форму вертикального цилиндра (столба), состоящего из соединённых между собой колец цинка, меди и сукна, пропитанных кислотой. Вольтов столб высотою в полметра развивал напряжение, чувствительное для человека.
Конец цитаты
Контактное электричество Вольта
Вольта изучал труды итальянского анатома Л. Гальвани, который ранее обнаружил сокращение мышц лягушки при соприкосновении их с различными металлами. Гальвани назвал это явление «животное электричество». Вольта предположил, что электричество вырабатывает не ткань лягушки, а контакт различных металлов в определенной среде.
Вольта провел такой эксперимент. Он использовал четырех человек. Первый держал в руке мокрую цинковую пластину, второй рукой он касался языка второго человека, второй человек касался другой рукой глаза третьего человека, третий человек держал в руке разрезанную лягушку, четвертый держал лягушку в одной руке и серебряную пластину в другой. Первый и четвертый человек касались разными пластинами. В момент контакта пластин второй человек ощущал кислый вкус на языке, третий видел яркий свет в глазу, а тело лягушки начинало сокращаться.
Алессандро Вольта назвал это явление «контактным электричеством». Вольта пришел к выводу, что для появления электричества необходима и жидкость, которая воздействует на металлы. Вольт ввел классификацию проводников. Металлы он отнес к проводникам первого класса, а жидкости — к проводникам второго класса.
Изобретение Вольтова столба
Вольта изготовил один из первых гальванических элементов, состоящий из металлических пластин и жидкости. Вольта использовал несколько цинковых и медных пластин цилиндрической формы и суконные круги, пропитанные кислотным раствором. Чередуя металлические пластины и и суконные круги, он получил вертикальный гальванический элемент. На концах этой конструкции возникал электрический ток. Это устройство было названо «Вольтовым столбом».
В то время еще не удалось дать химическое объяснение этому процессу. Сам Вольта объяснял появление электричества соприкосновением двух металлов, которое вызывало электродвижущую силу, при этом электричество накапливалось на концах различных пластин.
Вольта понял, что процесс создания электричества возможен только в присутствии жидкости, без жидкости пластины не давали тока. Вольта предположил, что жидкость выполняет роль разделителя между металлами, не давая развиваться встречному потоку частиц.
Так и был изобретен первый гальванический элемент.
Вольта развивал и модернизировал свое изобретение. Электрическая мощность столба напрямую зависела от количества использованных элементов. Самым лучшим по мощности и устойчивости «столбом» оказался «прибор из цепи чашек». Чашки были заполнены электролитом (состоящим из соленой воды), и между собой чашки соединялись медными и цинковыми дугами. Фактически, он выполнял последовательное соединение гальванических элементов. На концах такой системы возникал достаточно сильный ток.
Вольта придумал и другие варианты соединения элементов столба или нескольких столбов в одну систему.
До нашего времени сохранились некоторые приборы, построенные по принципу Вольтова столба.
Сам Вольта получил всемирное признание за изобретение, которое изменило мир.
Вольтов столб был изобретён таким известным учёным из Италии, как Алессандр Вольт. Он провел первые испытания химического источника тока еще в 1800 году. Его назвали элементом Вольта. Он представлял собой сосуд с подсоленной водой и опущенными в неё цинковыми и медными пластинами, которые соединялись проволокой. Потом учёный собрал целую батарею из таких элементов, которая позже была названа Вольтовым столбом. Вольтов столб своими руками могли сделать любые испытатели и с успехом применяли его.
Принцип действия
Наипростейший медно-цинковый столб собирается из 2 электродных пластин, расположенных в растворе электролита. В этом случае, погружая электролит в пространство между металлами, Вы создаете разницу потенциалов.
Для создания более высокого напряжения или мощности этих элементов заводские батарейки делают в виде последовательно соединённых, количество увеличивают до того, как получат нужное напряжение.
Заводская схема конструкции
История развития конструкции элемента Вольта
Открытие получило развитие в использовании учёных из других стран, которые его успешно применяли в своих исследованиях. К примеру, в 1802 году академик из России Петров собрал батарею — Вольтов столб из 2,1 тыс. элементов, которая обеспечивала электрическую дугу.
В дальнейшем, в 1836 году, химик Дж. Дэниель английского происхождения модернизировал элемент Вольта за счет того, что поместил электроды из цинка и меди в раствор из серной кислоты. Такую конструкцию прозвали как устройство вольтова столба.
Вторая половина девятнадцатого века
Затем в 1859 году во Франции исследователь физических явлений Гастон Планте изобрёл другой тип аккумулятора — свинцово-кислотный. Он до сих пор используется в автомобильных аккумуляторах. Но уже в 1865 году Ж. Лекланше изобрел свой гальванический элемент, который назвали элемент Лекланше. Он состоял из цинкового стакана, который был заполнен раствором водного хлористого аммония или другой соли хлора. В него помещали агломерат из оксида (IV)марганца с формулой — MnO2 с угольным токоотводом.
Модификация этой конструкции может использоваться и в современных солевых батарейках в различных бытовых устройствах. В это время в 1890 году в городе Нью-Йорк исследователь Конрад Губерт, который иммигрировал из России, создал 1-й электрический фонарик. Далее компания National Carbon в 1896 году начинает массовое производство первых сухих элементов имени Лекланше «Columbia» в мире. Самый наибольшее прослужившее гальваническое устройство на серно-цинковой батарее – накопитель, изготовленный в Лондоне во второй половине 19-го года. Он был подключён к звонку и до сих пор работает.
Стандартная схема простейшей батарейки
Современность
Портативной технике, которой пользуется человек сегодня, необходимо напряжение как минимум в 3,6 вольта (но лучше — 4,5). Для получения такого показателя рекомендуется использовать 4-5 выше описанных элементов, соединенных последовательно. Когда соединяют 5 литровых (объём электролита) элементов, то добиваются показателя в 3,5-4,6 вольт, при чем ёмкость возрастает до 45-50 ампер в час. Если разряд тока достигнет 400-600 миллиампер в час, то Вы сможете питать такой батарейкой небольшой радиоприемник или фонарик светодиодного типа. Также можно обеспечить зарядкой миниатюрный аккумулятор телефона до 10-20 часов, но питание современных телефонов и гаджетов потребует более серьезных источников.
Изготовление долгосрочного элемента питания для портативных устройств
Необходимые материалы
Чтобы самостоятельно сделать вольтов столб (химический источник электроэнергии), Вам понадобится:
- ёмкость побольше, например, объемом 40-50 литров (это минимум для стабильного питания портативных светодиодных лампочек и другой техники).
- пять медных пластин 20/40;
- пять цинковых пластин 20/40;
- любая соль.
На подготовительном этапе каждую пластинку припаивают или запрессовывают, загибая уголки пластин. Затем вставляют проводок и заплющивают молотком.
Сборка конструкции химического источника электроэнергии
Закрепите между собой пластины через электронопроводящие прокладки. Для этого подойдут деревянные брусочки или пластмассовые трубки. Опустите столб пластин в ёмкость с электролитом (раствор поваренной соли, нашатыря или серной кислоты — автоэлектролит). Кислоту добавляют порциями и периодически проверяют плотность раствора аэрометром. Необходимо добиться, чтобы она составляла 1,21-1,31 грамм на см3 – это приблизительно 280-300 г кислоты.
Модель одного элемента
Далее соедините получившиеся батарейки: медные пластины одного проводком соедините с цинковой полоской второго элемента. Таким образом, у Вас получится с одной стороны блока — медная полоска закреплена с проводом (+ положительная), а с противоположной — цинковая (отрицательная). Эффективность такого источника можно повысить за счет увеличения площади пластин, или использования более сильного электролита (серной кислоты).
Технология изготовления альтернативного источника питания
Источник