Вращающийся электрический соединитель своими руками

Вращающийся электрический соединитель своими руками

Samuel M. Livingston, flickr.com CC BY

Бывает, что при изготовлении самодельной конструкции, ремонте или усовершенствовании какого-либо промышленного изделия возникает проблема подобрать подходящий электрический разъем. Номенклатура серийно выпускаемых разъемов весьма широка, но иногда подобрать или приобрести готовое изделие просто невозможно. Остается изготовить необходимый разъем самостоятельно.

Конечно, сложный разъем с защелкой и фиксатором изготовить не удастся, но что-то более простое человеку умелому повторить вполне по силам.

У меня проблема нестандартного разъема возникла при изготовлении приставки-счетчика к дозиметру ДП-5. Приставка рассчитана на подключение к гнезду наушников дозиметра, а там используется гнездо под малогабаритную двухполюсную вилку.

Поиск по магазинам радиодеталей показал, что купить что-то подходящее невозможно. В интернете купить такой разъем можно только вместе с телефонами ТГ-7, а их в свою очередь – в комплекте с дозиметром. Но сам разъем довольно прост, поэтому появилась идея сделать его своими руками. Точнее говоря – отлить из эпоксидной смолы. Штыри можно использовать от других подходящих разъемов или изготовить из медной (латунной) проволоки подходящего диаметра.

В качестве материала для формы использовался обычный детский пластилин. Цвет в данном случае не имеет значения.

Приступаем к изготовлению формы. Половинка разъема укладывается на жесткую подложку, покрытую полиэтиленовой пленкой, и постепенно покрывается слоем пластилина. Для облегчения извлечения модель можно покрыть тонким слоем силиконового масла.

При изготовлении формы главное — хорошо вдавить пластилин во все уголки модели. После этого толщину формы доводят до 2-3 см.

Форму переворачивают и отделяют полиэтиленовую прокладку. Особое внимание обратите на отсутствие щелей между пластилином и моделью. Если щели есть, то нужно опять вернуть форму на подложку и хорошо промять.

Теперь модель извлекается. Все неровности можно аккуратно заделать стеком для лепки. В данном случае мне пришлось удалить выступ, образовавшийся в отверстии для винта. Имейте в виду, что вмятины на форме соответствуют выпуклостям на отливке, которые легко удаляются механической обработкой. А вот выступы дадут углубления, удалить которые на отливке не получится.

Теперь формируем каналы для штырей разъема и электрического шнура. Их можно прорезать или отпечатать подходящим по диаметру предметом.

Теперь изготавливается внутренняя часть разъема. Штыри припаиваются к жилам электрического шнура…

… и все это устанавливается в форме. Для фиксации деталей также используется пластилин. Форму можно смазать изнутри силиконовым маслом, стараясь не задеть детали разъема.

Эпоксидная смола приготавливается в соответствии с инструкцией, для замешивания удобно использовать половинку пластиковой упаковки от шоколадного яйца. К этому материалу эпоксидная смола практически не клеится, поэтому затвердевшие остатки легко удалить.

Форму заполняют эпоксидной смолой до половины, стараясь не допустить воздушных пузырей.

После отверждения смолы отливка извлекается. Я не использовал масло для смазывания формы, поэтому при извлечении форму пришлось разрушить.

Теперь изготавливаем вторую половину формы (или, если повезло, используем старую). Форма заполняется смолой и сверху устанавливается отлитая половинка разъема.

После отверждения смолы разъем практически готов.

Осталось удалить наплывы смолы и, при необходимости, обработать поверхность. Это можно сделать подходящим напильником.

При аккуратном изготовлении самодельный разъем ничем не уступает промышленному изделию. Единственный недостаток – неразборная конструкция, поэтому обращаться с разъемом нужно аккуратно, не вытаскивая его из ответной части за шнур и не допуская резкого перегиба шнура на входе в разъем. Если электрический шнур вырвется из эпоксидной смолы или переломится, то заменить его не удастся.

Поверхность разъема можно отполировать или, напротив, заматировать, чтобы скрыть внутренние детали. Если полярность включения имеет значение, то можно сделать на разъеме метку. Проще всего просверлить глухое отверстие глубиной 1,5-2 мм и заполнить его контрастной краской.

Готовый шнур с самодельным разъемом может использоваться как в самодельных конструкциях, так и при ремонте промышленных изделий.

Электрическая прочность эпоксидной смолы достигает нескольких киловольт на миллиметр, поэтому такие разъемы, при выборе соответствующего конструктива, могут использоваться не только в слаботочных, но и в силовых сетях 220/380В.

Читайте также:  Дачные шкафы своими руками

Источник

Вращающийся электрический соединитель своими руками

Сообщение Maxmg » 14 июн 2018, 16:23

Передать питание на вращающийся контакт

Сообщение elalex » 14 июн 2018, 16:36

Передать питание на вращающийся контакт

Сообщение ПАВ » 14 июн 2018, 17:57

Передать питание на вращающийся контакт

Сообщение Maxmg » 14 июн 2018, 20:59

Передать питание на вращающийся контакт

Сообщение Rumato » 14 июн 2018, 21:03

Передать питание на вращающийся контакт

Сообщение ПАВ » 14 июн 2018, 21:27

Втулки из нормального текстолита, гетинакса не есть проблема для почти трезвого токаря, я тАк думаю? Обычно там около 10 мм диаметр вала. Садите на трубку ТЭНа, а гайками только придавите, ну совсем не проблема при таких оборотах. Сделал бы за 15 мин. с пиффом. С пиффом и деффками- дольше.
А если честно- зачем ТЭН вращать, если он греет по всей длине и окружности?

Источник

Mercotac – вращающиеся электрические соединители

О компании Mercotac

Компания Mercotac была основана в 1978 году с конкретной целью: создание уникальных, высококачественных вращающихся электрических соединителей по доступной цене. Оригинальная конструкция вращающихся контактных устройств была разработана гораздо раннее, для применения в колонках Лезли, использующих эффект Доплера. С тех пор Mercotac усовершенствовала конструкцию своих электрических соединителей.

На сегодняшний день вращающиеся контактные устройства Mercotac используются во многих отраслях машиностроения и автоматики. Также соединители Mercotac благодаря своим уникальным свойствам нашли широкое применение в робототехнике.

Отличительные черты вращающихся электрических соединителей Mercotac:

  • сверхнизкий уровень электрических шумов,
  • низкое сопротивление (переходное сопротивление контактов менее 1х10-3Ом),
  • сопротивление изоляции более 25 МОм,
  • интервал рабочих температур от -29° до +60°С,
  • высокая надежность,
  • долговечность.

Вращающиеся контактные устройства Mercotac (Меркотак) выполнены с использованием запатентованной технологии, которая заключается в том, что контакт между несущими проводниками выполнен в виде герметичного канала с жидкой ртутью. Вращающиеся электрические соединители предназначены для переноса электросигналов на вращающиеся элементы машин. Контактные устройства Mercotac могут использоваться как в силовых цепях, так и в цепях управления. Вращающиеся электрические соединители Mercotac намного меньше и прочнее, чем традиционные вращающиеся щеточные системы. Электрическое соединение, выполненое с использование соединителей Mercotac остается неизменным на весь период использования соединителя.

Вращающиеся электрические соединители Mercotac

Вращающиеся контактные устройства MERCOTAC выпускаются на 1-8 контактов, ток 250-10А, постоянное или переменное (частота до 200 МГц) напряжение 0-500В.

Источник

Как сделать наждачную точилку для ножей и сверл
из жесткого диска

Для тех, кто занимается рукоделием и ремонтом, для заточки небольших ножей, сверл, лезвий плоских отверток, шил, иголок и обработки поверхностей небольших деталей крайне необходимо иметь под руками малогабаритный тарельчатый шлифовальный станок. В продаже есть дорогие профессиональные большой мощности, а вот настольных миниатюрных не встречал.

Поэтому изготовил самодельный тарельчатый шлифовально-заточной станок из старого компьютерного жесткого диска HDD, который показан на фото. Результат превзошел все ожидания. Теперь не вставая с рабочего места можно быстро заправить затупившийся инструмент.

Выбор контроллера и подключение двигателя HDD

В винчестерах (жестких дисках) установлен трехфазный низковольтный двигатель. Поэтому для его вращения нужно напряжение 12 В трехфазного тока, которое можно получить путем преобразования постоянного напряжения с помощью контроллера, выполненного на микросхемах. Схема простая, но разрабатывать ее и изготавливать не хотелось.

А тут на Алиэкспресс появился подходящий по параметрам и размерам недорогой контроллер для трехфазных двигателей, рассчитанных на питающее напряжение 5-15 В при токе нагрузки до 2 А. В дополнение с ручным ШИМ регулятором оборотов от 0 до 10 000 в минуту и защитой от перегрузки. Модель ZS-X9B.

Для самодельной точилки подойдет любой жесткий диск форм фактора 3,5 дюйма от стационарного компьютера. При этом чем старее диск и меньше емкость, тем лучше, так как в старых установлены более мощные двигатели.

На этикетке винчестера обычно указан ток его потребления по цепям 5 В и 12 В с учетом потребления схемы управления. Ток потребления двигателя будет меньше. Когда будет найден жесткий диск, то надо проверить, чтобы ток его потребления по цепи 12 В не превышал 1 А. Приведенный на фото винчестер, взятый для самоделки потребляет 0,75 А.

После получения платы контроллера из Китая можно приступать к изготовлению точильного станка. Начинать с откручивания всех видимых и невидимых винтов на корпусе жесткого диска.

Для этого понадобится качественная отвертка со звёздочкой. Винты откручиваются с большим усилием и у дешевой отвертки все грани звездочки сразу же срежутся. Один из винтов крышки обычно находится под этикеткой, и чтобы найти его надо легко проводя пальцем по ее поверхности найти на ней мягкое место и прорвать отверстие.

Читайте также:  Автомобильный кипятильник своими руками 24в

Далее демонтируется механизм, управляющий перемещением магнитных головок. Для этого отвинчиваются винты, фиксирующие неодимовые магниты, после чего механизм легко снимается с оси. Останется еще снять переходную колодку, соединяющую магнитные головки с печатной платой.

Снятые неодимовые магниты приклеены к стальным пластинам, и несмотря на малые размеры, обладают большой силой притяжения черных металлов, в хозяйстве пригодятся. Я ранее из-за этих магнитов разбирал винчестеры.

С нижней стороны винчестера на нескольких винтах установлена печатная плата. Если подать на ее четырех контактный разъем питающее напряжение 5 В и 12 В, то в некоторых моделях двигатель запустится, но через время для снижения износа из-за отсутствия сигнала обращения с компьютера остановится. В дополнение если будет незначительно превышена нагрузка на диск, то будет срабатывать защита и двигатель будет останавливаться.

С остановкой и защитой конечно можно, при наличии схемы, разобраться. А вот найти стандартный блок питания с двумя выходными напряжениями практически невозможно. Придется использовать блок питания от компьютера, а он большой по размерам. По этим причинам и был использован в самоделке специальный контроллер.

Обмотки двигателя винчестера, как и трехфазные двигатели в электротехнике, внутри его корпуса могут быть соединены по схеме треугольника (три вывода) или по схеме звезды (четыре вывода) как в двигателе на фотографии. Для изготовления точилки значения не имеет.

Если двигатель имеет три вывода, то провода U, V и W от контроллера присоединяются к ним в любом порядке. Направление вращения мотора можно изменить, поменяв местами два любых вывода или переключив джампер (перемычку) на контроллере.

Если двигатель имеет четыре вывода, то вывод N остается свободным. В остальном все как выше описано. Только нужно еще определить какой из выводов является N.

Если есть мультиметр, то нужно измерять сопротивление между выводами, которое должно составлять несколько Ом. Сопротивление между выводами U, V и W будет равным, а между N и любым другим меньше в два раза, так как будет измеряться сопротивление только одной обмотки.

Еще можно измерять сопротивление (может быть около 500 Ом) между контактами на печатной плате для подключения двигателя и общим проводом. Вывод, при прикосновении к которому сопротивление будет отличаться от остальных и будет общим N. Если сопротивление будет изменяться до бесконечности, то нужно поменять местами щупы.

Если нет приборов, то просто припаять к трем выводам подряд провода от контроллера, а затем крайний перебросить на другой край. В каком случае двигатель будет лучше держать нагрузку, тот вариант и будет правильным. Не забывайте отключать при перепайках питающее напряжение. Испортить контроллер от таких манипуляций невозможно, так что можно экспериментировать смело.

После определения со схемой подключения провода от контроллера были припаяны к выводам двигателя и на контроллер подано питающее напряжение величиной 12 В от стационарного блока питания. Провод красного цвета VCC разъема контроллер подключается к плюсу, а черного GND – минусу БП.

Двигатель запустился с первой попытки и стабильно работал при отключении и подачи питающего напряжения. Скорость вращения регулировалась от нуля до 10000 оборотов в минуту, как и заявлял производитель контроллера. Ток потребления на холостом ходу составил 0,48 А, при торможении пальцем диска вплоть до остановки ток возрастал до 1,0 А.

Обычно двигатель винчестера при работе развивает скорость 7 000 оборотов в минуту. Проверка показала, что он успешно работает и при скорости 10 000 об/мин.

Для интереса посмотрел с помощью осциллографа форму сигнала на выводах двигателя. Удивило, что положительная форма импульса была дополнительно наполнена высокочастотными импульсами. На всех фазах форма импульсов была одинаковой, но сдвинутой относительно друг друга на 120°.

Исходя из полученных данных был подобран из имеющихся от не подлежащих ремонту девайсов и испытан адаптер на 12 В и ток нагрузки до 1,0 А.

Изготовление тарельчатого шлифовально-заточного станка

Со схемой подключения двигателя винчестера к контроллеру и выбором блока питания разобрались и теперь можно перейти к физической реализации задумки по изготовлению тарельчатого шлифовально-заточного станка.

В винчестере, который был взят за основу для станка диск оказался утоплен относительно верхней поверхности корпуса на 5 мм, что делало невозможным заточку плоского инструмента, например, ножа.

Читайте также:  Винилов сайдинг монтаж своими руками

Пришлось его поднять на 10 мм, для чего сначала в точках крепления двигателя были просверлены сквозные отверстия ⌀2,5 мм и затем нарезана резьба М3.

Далее подобраны стойки высотой 10 мм, двигатель установлен на них и закреплен винтами М3, как показано на фото.

Далее была изготовлена новая верхняя крышка. Штатная была не плоской и очень тонкой, решил сделать более основательную. Вырезал в размер корпуса из листа алюминия толщиной 1,5 мм с помощью ножовки по металлу. Отверстие под двигатель выпилил с помощью лобзика, заправленного пилкой по металлу.

Далее крышка была закреплена на корпусе и установлен диск. Зазор между диском и крышкой, как и было задумано, составил около 1 мм.

Одновременно с верхней была вырезана и нижняя крышка и на нее по углам установлены четыре резиновых ножки, взятые от какого-то прибора. Резина не даст скользить станку по столу во время заточки инструмента и будет гасить вибрацию.

Установка и монтаж электронных компонентов

Пришло время разместить в корпусе винчестера контроллер, включатель и разъем подачи питающего напряжения. После определения мест установки этих элементов пришлось дорабатывать корпус и контроллер.

Так как контроллер по высоте не вмещался в корпус винчестера пришлось его доработать. Электролитический конденсатор емкостью 470 микрофарад на напряжение 16 В путем наращивания длины выводов был расположен соосно с регулятором скорости. С разъема снят пластмассовый корпус и укорочены штыри до высоты 3 мм. Провода к ним присоединены путем пайки. Вместо джампера припаяна перемычка из медной проволочки.

Так как высоту переменного резистора регулятора скорости уменьшить было невозможно, то в корпусе отверстие, в котором ранее располагался переходной разъем с магнитной головки, было расточено надфилем таким образом, чтобы в него поместился резистор и конденсатор. Контроллер был закреплен через втулку с помощью винта.

Тумблер включения был закреплен в просверленном для него сбоку отверстии гайкой. Разъем для подключения шнура от адаптера питания был закреплен в задней стенке корпуса с помощью термоклея. Подробно описывать технологию крепления электронных компонентов нет смысла, так как корпуса винчестеров отличаются и в каждом конкретном случае потребуется свое решение.

Приклеивание наждачной бумаги к диску

Приклеивание абразивного материала на диск винчестера является простой, но ответственной работой, так как диск вращается с большей скоростью, и наждачная бумага может отвалиться.

Я не стал наждачное полотно заводить под прижимающий диск кольцо, потому что крепежные винты короткие и надежность крепления диска могла снизиться.

Поэтому размер внутреннего отверстия был выбран чуть больше внешнего диаметра удерживающей диск кольца – 34 мм. Внешний размер был равен диаметру диска – 95 мм. Наносить разметку проще всего циркулем.

Вырезать внешний контур наждачной бумаги можно с помощью ножниц, при этом будут заточены еще и их режущие кромки. А внутреннее отверстие проще вырезать строительным ножом.

Для хорошей адгезии термоклея с диском нужно включить станок и путем прикосновения к поверхности вращающегося диска наждачной бумаги удалить зеркальную поверхность.

Для склейки наждачной бумаги с диском можно применять любой подходящий клей, например, «Момент». Но я читал, что для этих целей хорошо подходит термоклей и решил попробовать.

Со временем абразив сотрется и наждачку придется отклеивать для замены. Если она будет держаться намертво, то это создаст трудности при отделении полотна от диска. А термоклей достаточно разогреть и изношенный лист легко отделится от диска. Пистолет разогревать не стал, а просто нарезал мелких кусочков термоклея и равномерно разложил на наждачной бумаге.

Далее на термоклей наложил диск, чтобы не запачкать утюг на него хлопчатобумажную ткань, а сверху утюг, включенный в режим максимального нагрева. Вместо ткани подойдет и лист бумаги.

Когда индикатор нагрева утюга погас, то снял его, и заменил тяжелой холодной железкой. Через минуту термоклей остыл и затвердел.

Осталось закрепить шлифовальный диск на двигателе и можно приступать к работе. Работать на станке понравилось, переточил весь мелкий инструмент и затупившиеся сверла.

Предлагаю вашему вниманию короткий видео ролик, демонстрирующий тарельчатый шлифовально-заточной станок в работе.

Если сталь инструментальная и закаленная, то при заточке и правке инструмента летит сноп искр. Опытные слесари по внешнему виду и цвету искр определяют даже марку стали.

Самоделка оказалась очень полезной и удобной в эксплуатации, жаль, что не сделал такой заточной станок ранее. Если вы мастеровой человек, то настоятельно рекомендую сделать себе такой станочек.

Источник

Оцените статью