При ремонте микроволновки бывает встречается такая ситуация, когда детали умножителя проверили, напряжение на первичной обмотке трансформатора замерили, а стакан с водой всё равно холодный 🙁 …
Возможно неисправен магнетрон, но … вдруг ошибка? Вот бы проверить высокое напряжение на катоде магнетрона.
Теперь у меня есть такая возможность — я собрал киловольтметр.
Схема киловольтметра
Схема простая и состоит всего из трёх деталей:
Резистор на 15 МОм — тип резистора КЭВ-1 от старого лампового цветного телевизора.
Диод КЦ105Г, КЦ106Г или от микроволновки.
Измерительная головка от магнитофона.
Изготовление прибора
Корпус — это кусок кабельканала, корпус от сетевого адаптера. Щуп — медная проволока, кембрик. Передняя бобышка сделана из холодной сварки. В в неё вставлен щуп. На щупе есть виток, чтоб он не прокручивался в бобышке.
Шкалу миллиамперметра менять не стал.
Я применил диод КЦ106Г — он хорошо подходит по размерам. Резистор взял от старого лампового цветного телевизора. Резистор и диод помещены в кембрик.
Кабельканал и измерительная головка приклеил клеем «Момент».
На одном выводе конденсатора в микроволновке показывает меньше 10, на другом больше 5 — этого вполне достаточно, чтоб сделать правильные выводы о исправности магнетрона.
Правила пользования прибором
Первым делом — надежно подключайте щуп с крокодилом к корпусу печки и держа за корпус пробника касайтесь выводов конденсатора.
Через несколько месяцев эксплуатации выяснилось такое: если магнетрон не исправен, то напряжение на выводе конденсатора соединенного с катодом повышено и стрелка показывает чуть больше двух, что в общем-то объяснимо: магнетрон не генерирует, отбора мощности нет, напряжение повышается до пикового значения.
Тестер «киловольтметр» все таки облегчает диагностику.
ВНИМАНИЕ! Соблюдайте технику безопасности: 2000 Вольт переменного и 4000 Вольт постоянного тока при мощности трансформатора 1 кВт убьет наповал!
Источник
Высоковольтный тестер своими руками
На такую формулировку хочется ответить: берете и изготавливаете.
Вопрос в схеме или в конструктиве?
Реклама
JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!
Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc
_________________ Ничто так не укрепляет взаимное доверие, как 100% предоплата! Дмитрий, RK3AOR.
Реклама
Вебинар поможет в выборе недорогих источников питания оптимальных для систем охраны, промышленных и телекоммуникационных приложений, а также для широкого применения. Будут представлены основные группы источников питания по конструктивным признакам и по областям применения в контексте их стоимости или их особенностей, позволяющих снизить затраты на электропитание конечного устройства.
Сэр Мурр
Модератор
Карма: 46 Рейтинг сообщений: 232 Зарегистрирован: Чт окт 27, 2005 18:50:07 Сообщений: 11174 Откуда: из мест не столь отдалённых Рейтинг сообщения: 0 Медали: 2
Реклама
Реклама
Приглашаем всех желающих 13 октября 2021 г. посетить вебинар, посвященный искусственному интеллекту, машинному обучению и решениям для их реализации от Microchip. Современные среды для глубинного обучения нейронных сетей позволяют без детального изучения предмета развернуть искусственную нейронную сеть (ANN) не только на производительных микропроцессорах и ПЛИС, но и на 32-битных микроконтроллерах. А благодаря широкому портфолио Microchip, включающему в себя диапазон компонентов от микроконтроллеров и датчиков до ПЛИС, средств скоростной передачи и хранения информации, возможно решить весь спектр задач, возникающий при обучении, верификации и развёртывании модели ANN.
Сейчас этот форум просматривают: kentgaryk и гости: 10
Источник
Измеряем высокое напряжение мультиметром
При изготовлении самодельных высоковольтных конструкций, при настройке параметров ионизаторов воздуха, плазменных ламп и прочих устройств, где используется высокое питающее напряжение, появляется необходимость в измерении напряжения в десятки киловольт. Для этой цели, в профессиональной деятельности используются специальные приборы — «киловольтметры». Покупать такой прибор преднамеренно, имеет смысл только при частом его использовании. Но в практике радиолюбителя такие измерения выполняются не часто. Поэтому, для оценки параметров изготовляемой конструкции по высокому напряжению, мы сможем воспользоваться обычным мультиметром, но с дополнительной приставкой.
Верхний предел измерения напряжения традиционного мультиметра, обычно не превышает 700…1000V. Поэтому, для измерения мультиметром высокого напряжения, его и необходимо дополнить приставкой, которая позволит расширить диапазон измерения.
Такую простую приставку — киловольтметр для измерения напряжений 10 и более киловольт, на базе делителя напряжения, мы сможем за вечер изготовить сами.
Делитель напряжения на резисторах
Делитель напряжения, это простейшая схема, позволяющая из высокого напряжения получить пониженное, используя только два резистора. Выходное пониженное напряжение будет составлять часть от входного напряжения, и зависеть от соотношения сопротивлений плеч делителя.
Схема делителя напряжения включает входной источник напряжения (V in) и два резистора R1 и R2. Падение напряжения (Vout) на резисторе R2, это и будет необходимое нам пониженное напряжение.
Схема делителя напряжения элементарна, но такие делители никогда не используются для большой нагрузки. Причиной тому, нестабильность выходного напряжения из-за влияния переменных сопротивления нагрузки, температурного дрейфа сопротивления резисторов. КПД такой схемы низкий, небольшая часть мощности достигает нагрузки, большая часть выделяется на резисторах в виде тепла.
В конструкции приставки функционируют сравнительно большие напряжения, но очень маленькие токи, приставка выполняется в виде высоковольтного и высокоомного делителя напряжения. Это в большой степени позволяет уменьшить влияние перечисленных негативных причин и при правильном расчете делителя обеспечить реальную оценку контролируемого напряжения.
Обратим внимание, что нагрузка подключается к делителю напряжения параллельно резистору R2, шунтируя его. При этом общее сопротивление плеча делителя уменьшается (вспомним формулу параллельного соединения сопротивлений) и напряжение на выходе делителя изменяется. Поэтому, для уменьшения влияния нагрузки, сопротивление резистора R2 делителя, желательно установить значительно меньше, чем сопротивление нагрузки, в нашем случае мультиметра с внутренним сопротивлением 10 мОм. (Внутреннее сопротивление простых мультиметров часто бывает 1 мОм). Это необходимо учесть при расчетах делителя напряжения.
Расчет резисторного делителя напряжения В расчете выходного напряжения делителя, используются значения номиналов из выше приведенной схемы. Зная эти величины, мы можем рассчитать выходное напряжение по следующей формуле, основанной на законе Ома.
V out = V in x R2 / (R1 + R2)
В некоторых случаях, задав значения входного и выходного напряжений (Vin, Vout), необходимо рассчитать сопротивление нижнего плеча R2 под имеющийся высокоомный резистор R1. Такая задача будет стоять и в нашем примере. Тогда мы сможем рассчитать необходимое значение номинала резистора R2 по следующей формуле:
R2 = (R1 х Vout) / (Vin — Vout)
Однако, мы сможем упростить задачу обратившись в Интернет, так как там имеется много онлайн-калькуляторов для быстрого расчета делителя напряжения.
На заметку, соотношение напряжений между R1 и R2 обусловлено только их относительными значениями. Номиналы резисторов плеч могут варьироваться, важно только выдержать их соотношение.
Изготовление делителя напряжения
Изготовим двух диапазонную приставку к мультиметру, для контроля напряжений до 10 киловольт, с делителем напряжения на резисторах. Коэффициент деления напряжения «1000» — 1 диапазон измерения, «100» — 2 диапазон. В основе этого варианта делителя лежит приведенная выше базовая схема.
1. Схема изготовляемой приставки:
Принципиальная схема приставки для возможности измерения высоких напряжений (до 10 киловольт) используя мультиметр. Номиналы резисторов ориентировочные.
В качестве верхнего плеча делителя R1 использован высоковольтный резистор КЭВ-1 с номиналом сопротивления 100 мОм. Фактическое сопротивление резистора около 80 мОм.
Нижнее плечо делителя R2 (верхняя базовая схема), в приставке состоит из двух последовательно соединенных резисторов, общим сопротивлением около 800 кОм.
В нормальном положении кнопка S1 шунтирует один из резисторов цепочки (R3), в этом положении сопротивление плеча будет около 80 кОм (коэффициент деления — соотношение резисторов R1 и R2, равен 1000 — 1 диапазон измерения). При нажатии кнопки S1, сопротивление плеча увеличивается до 800 кОм (коэффициент деления, будет равен 100 — 2 диапазон). Второй диапазон измерения включается для уточнения показаний Vout мультиметра V, при небольших значениях входного напряжения Vin.
Следует отметить, что каждое из сопротивлений R2 и R3 в схеме приставки, может быть составлено из двух-трех резисторов. Это необходимо для точной подгонки расчетного значения сопротивления в обоих диапазонах измерения. Для примера, при сопротивлении верхнего плеча делителя R1 равного 80,0 мОм, сопротивление нижнего плеча R2 в 1 диапазоне, с учетом нагрузки из внутреннего сопротивления мультиметра 10 мОм должно быть равно 80,645 кОм, которое приходится подбирать из нескольких резисторов.
2. Комплектация приставки
Для верхнего плеча делителя R1 используем постоянный непроволочный, высоковольтный, лакопленочный, с композиционным лакосажевым проводящим слоем, резистор КЭВ-1 для навесного монтажа. Резисторы предназначены для работы в электрических цепях постоянного и переменного токов.
Основные технические характеристики резисторов КЭВ-1: — Диапазон номинальных сопротивлений: 510 кОм. 47 гОм — Максимально допустимая рассеиваемая мощность — 0,5; 1; 2; 5; 10; 20 и 40 Вт — Рабочее напряжение от 2,5 до 60 кВ (в зависимости от мощности) — Температурный коэффициент сопротивления в диапазоне -60. +20°С — не более 0,35%/° — Допускаемые отклонения сопротивлений: ±5; ±10; ±20 % — Рабочая температура -60 . +100°С
Остальные резисторы МЛТ-0,5, кнопка Д301 с контактами на размыкание, они будут работать при напряжении до 80 — 100 В.
Для корпуса использована пластмассовая трубка (от проточного водонагревателя) диаметром 20 мм и длиной 150 мм. В качестве платы для объемного монтажа резисторов использован шток от медицинского шприца. Подгоним его диаметр для плотного вхождения в трубку. Наконечником приставки будет служить измерительный щуп от старого прибора.
3. Изготовление приставки
Резьбовой частью щупа закрепим наконечник в упоре штока шприца. Определим положение микровыключателя в трубке, оно определяется длиной штока. По расположению выключателя, в стенке трубки обработаем отверстие диаметром 8 мм для доступа к кнопке.
4. Использование приставки
Провод черного цвета в усиленной изоляции является общим (-) для Vin и Vout. Так как он подключается к высоковольтной цепи, требования к его изоляции и правилам электробезопасности должны быть соответствующими. Этот провод выводится от контактов кнопки, в середине корпуса.
Низковольтная часть схемы делителя находится в задней части корпуса. Измерительный провод (+) к мультиметру проходит через колпачок на торце корпуса.
Для измерения высокого напряжения, подключаем мультиметр в диапазоне 100…200 V к соответствующим выводам приставки. Подсоединяем общий провод к высоковольтному устройству. Включаем ВВ устройство.
Измерительным щупом с передней стороны корпуса касаемся источника высокого напряжения. Снимаем показания прибора в 1 диапазоне измерения «1000». При малых значениях напряжения на шкале прибора, нажимаем кнопку и переключаем приставку в диапазон 2 «100».
5. Тестирование приставки
Проверим работу приставки на переменном токе в сети 220V. Подключенный к сети тестер показывает ровно 220V.
Аналогичные измерения показывают, что выпрямленное ВЧ напряжение составляет около 10 кВ и то, что необходимо точнее подобрать сопротивление нижнего плеча делителя напряжения. При необходимости в более точных измерениях высокого напряжения, можно подать сигнал с приставки на осциллограф, будет видно амплитуду и форму импульсов.
При желании собрать приставку на делителе напряжения с коэффициентом 10 000, можно собрать цепочку из десяти последовательно включенных высокоомных резисторов сопротивлением по 68 мОм (верхнее плечо делителя с суммарным сопротивлением 680 мОм) и одного резистора (нижнее плечо) сопротивлением 68 кОм. При монтаже, все резисторы нужно расположить равномерно в линейку, на длине не менее 200мм для исключения пробоя в приставке.
6. Техника безопасности
При использовании киловольтметра следует соблюдать меры техники безопасности.
Подключение и отключение прибора производить при обесточенной аппаратуре, после снятия заряда с токоведущих высоковольтных частей. При подключении прибора к измеряемым цепям, заземление подключать в первую очередь. При отключении щупа от измеряемых цепей, заземление отключать в последнюю очередь.