- Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно
- Источник высокого напряжения за 5 минут
- Немного о компактных люминесцентных лампах
- Немного о строчных трансформаторах
- Итоговая конструкция
- Возможные проблемы
- Опасное развлечение: простой генератор высокого напряжения Кокрофта-Уолтона
- Предыстория и предпосылки
- Железо
- Результаты
Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно
Всем здравствуйте! В сети множество схем высоковольтных генераторов отличающихся по мощности, по сложности сборки, по цене и доступности компонентов. Данная самоделка собрана из практически бросовых деталей, собрать ее сможет любой желающий. Собирался этот генератор, скажем так, для ознакомительных целей и всевозможных опытов с электричеством высокого напряжения. Примерный максимум этого генератора 20 киловольт. Так как в качестве источника питания для этого генератора не используется сетевое напряжение это дополнительный плюс с точки зрения безопасности.
Кому интересно попробую рассказать подробнее. В качестве генератора импульсов используется кулер охлаждения от компьютера или аналогичный на 12 вольт, но с одним условием – в нем должен быть встроенный датчик холла. Именно датчик холла и будет генерировать импульсы для высоковольтного трансформатора, в качестве которого, в данном случае, используется катушка зажигания от автомобиля. Выбрать подходящий вентилятор очень просто, как правило, он имеет три ввода.
На фото видно наличие трех выводов. Стандартная расцветка это красный вывод плюс питания, черный – общий (земля) и желтый – выход с датчика холла. При подаче питания на вентилятор на выходе (желтый провод) получаем импульсы, частота которых зависит от оборотов электромотора данного кулера и чем выше напряжение, тем выше частота импульсов. Повышать напряжение следует в разумных пределах — примерно 12-15 вольт, чтоб не спалить кулер и всю схему. Получаемый импульсный сигнал предстоит подать на катушку зажигания, но его необходимо усилить.
В качестве силового ключа использовал «N» канальный полевой транзистор (мосфет) IRFS640A подойдут и другие с аналогичными параметрами, или примерные на ток 5-10 ампер и напряжение вольт 50 для надежности. Мосфеты присутствуют практически во всех современных электронных схемах, будь то материнская плата компьютера или пусковая схема энергосберегающей лампы, а значит, найти подходящий не возникнет проблем.
Катушка зажигания от автомобилей ВАЗ «классика» Б117-А имеет три вывода. Центральный это высоковольтный выход, «Б+» это плюсовой 12 вольт, и общий «К» — возможно не маркируется.
Изначально схем состояла из трех компонентов: кулер, мосфет и катушка, но через непродолжительное время работы ломалась, так как выходили из строя либо мосфет, либо датчик холла. Выход – установка резисторов на 100 Ом для ограничения пускового тока с датчика холла на затвор, и подтягивающий резистор 10кОм для запирания мосфета при отсутствии импульса.
При сборке схемы транзистор следует устанавливать на радиатор желательно с применением термопасты, так как нагрев при работе существенный.
Разъем от кулера использовал в качестве клеммной колодки для подключения мосфета. В результате необходимость в пайке транзистора отпала, для подключения или замены достаточно соединить колодку с выводами транзистора.
Вентилятор закрепил сверху радиатора при помощи двух саморезов. В результате получилось, что кулер играет двойную роль – как генератор импульсов и как дополнительное охлаждение.
Подключаем питание 12-14 вольт от аккумулятора и пробуем в работе.
Для молний по дереву данный агрегат конечно слабоват, но что такое высокое напряжение с данной самоделкой — оценить можно.
Источник
Источник высокого напряжения за 5 минут
Из данной статьи вы узнаете как получить высокое напряжение, с высокой частотой своими руками. Стоимость всей конструкции не превышает 500 руб, при минимуме трудозатрат.
Для изготовления вам понадобится всего 2 вещи: — энергосберегающая лампа (главное, чтобы была рабочая схема балласта) и строчный трансформатор от телевизора, монитора и другой ЭЛТ техники.
Энергосберегающие лампы (правильное название: компактная люминесцентная лампа) уже прочно закрепились в нашем быту, поэтому найти лампу с нерабочей колбой, но с рабочей схемой балласта я думаю не составит труда.
Электронный балласт КЛЛ генерирует высокочастотные импульсы напряжения (обычно 20-120 кГц) которые питают небольшой повышающий трансформатор и т.о. лампа загорается. Современные балласты очень компактны и легко помещаются в цоколе патрона Е27.
Балласт лампы выдает напряжение до 1000 Вольт. Если вместо колбы лампы подключить строчный трансформатор, то можно добиться потрясающих эффектов.
Немного о компактных люминесцентных лампах
Блоки на схеме:
1 — выпрямитель. В нем переменное напряжение преобразуется в постоянное.
2 — транзисторы, включенные по схеме push-pull (тяни-толкай).
3 — тороидальный трансформатор
4 — резонансная цепь из конденсатора и дросселя для создания высокого напряжения
5 — люминесцентная лампа, которую мы заменим строчником
КЛЛ выпускаются самой различной мощности, размеров, форм-факторов. Чем больше мощность лампы, тем более высокое напряжение нужно приложить к колбе лампы. В данной статье я использовал КЛЛ мощностью 65 Ватт.
Большинство КЛЛ имеют однотипную схемотехнику. И у всех имеется 4 вывода на подключение люминесцентной лампы. Необходимо будет подсоединить выхода балласта к первичной обмотке строчного трансформатора.
Немного о строчных трансформаторах
Строчники также бывают разных размеров и форм.
Основной проблемой при подключении строчника, является найти 3 необходимых нам вывода из 10-20 обычно присутствующих у них. Один вывод — общий и пара других выводов — первичная обмотка, которая будет цепляться к балласту КЛЛ.
Если сможете найти документацию на строчник, или схему аппаратуры, где он раньше стоял, то ваша задача существенно облегчится.
Внимание! Строчник может содержать остаточное напряжение, так что перед работой с ним, обязательно разрядите его.
Итоговая конструкция
На фото выше вы можете видеть устройство в работе.
И помните, что это постоянное напряжение. Толстый красный вывод — это «плюс». Если вам нужно переменное напряжение, то нужно убрать диод из строчника, либо найти старый без диода.
Возможные проблемы
Когда я собрал свою первую схему с получением высокого напряжения, то она сразу же заработала. Тогда я использовал балласт от лампы мощностью 26 Ватт.
Мне сразу же захотелось большего.
Я взял более мощный балласт от КЛЛ и в точности повторил первую схему. Но схема не заработала. Я подумал, что балласт сгорел. Обратно подключил колбы лампы и включил в сеть. Лампа загорелась. Значит дело было не в балласте — он был рабочий.
Немного поразмыслив я сделал вывод, что электроника балласта должны определять нить накала лампы. А я использовал только 2 внешних вывода на колбу лампы, а внутренние оставил «в воздухе». Поэтому я поставил резистор между внешним и внутренним выводом балласта. Включил — схема заработала, но резистор быстро сгорел.
Я решил использовать конденсатор, вместо резистора. Дело в том, что конденсатор пропускает только переменный ток, а резистор и переменный и постоянный. Также, конденсатор не нагревался, т.к. давал небольшое сопротивление на пути переменного тока.
Конденсатор работал великолепно! Дуга получилась очень большой и толстой!
Итак если у вас не заработала схема, то скорее всего 2 причины:
1. Что-то не так подключили, либо на стороне балласта, либо на стороне строчного трансформатора.
2. Электроника балласта завязана на работе с нитью накала, а т.к. ее нет, то заменить ее поможет конденсатор.
Используйте конденсатор на соответствующее напряжение! У меня был на 400 Вольт, взятый из балласта другой энергосберегающей лампы.
При проведении опытов с высоким напряжением будьте предельно осторожны! Высокое напряжение опасно для жизни!
Лампа мощностью 65 Ватт, обеспечивает ток порядка 65 мА (65Ватт/1000В). А сила тока более чем 50 мА, смертельна опасна для жизни и вызывает остановку сердца!
Источник
Опасное развлечение: простой генератор высокого напряжения Кокрофта-Уолтона
Добрый день, уважаемые хабровчане.
Этот пост будет небольшим и не очень обучающим, но может быть кому-нибудь покажется интересным. В нем я расскажу вам, как сделать очень маленький, полностью SMD-шный и легко масштабируемый генератор Кокрофта-Уолтона, или попросту умножитель напряжения, который на вход получает переменные N вольт, а на выходе выдает постоянные x*N вольт, где x — число ступеней.
Предупреждаю: так как на выходе стоят конденсаторы (собственно, как и на входе, кроме конденсаторов и диодов в нем ничего и нет), удар тока, скорее всего, окажется для вас смертельным. Собирайте схему на ваш страх и риск и только в том случае, если понимаете, что делаете. Я не несу никакой ответственности за вашу жизнь, здоровье и психику.
Не испугались? Тогда идем дальше.
Предыстория и предпосылки
Собственно, предыстория очень простая — этот генератор высокого напряжения — один из самых простых схемотехнически, не содержит огромных катушек, в отличие от Трансформатора Теслы и весьма легок в сборке. Результаты, конечно, тоже менее впечатляющие, чем у Теслы — на выходе мы имеем не высокое напряжение большой частоты, а просто высокое напряжение. Поэтому, во-первых, красивых коронных разрядов можно не ждать, а во-вторых, в отличие от Теслы, разряд генератора Кокрофта-Уолтона лишен скин-эффекта, поэтому, вероятнее всего, смертелен. Следует соблюдать большую осторожность.
В общем, когда-то я собрал себе умножитель по традиционной схеме (рассмотрим чуть позже), из больших конденсаторов и диодов, который выглядел вот так:
Было в нем 15 ступеней, конденсаторы на 400В х 0.1 мкФ и диоды на 1000В х 1А. Для того, чтобы его запитать, я собрал небольшой инвертер из валявшегося под рукой трансформатора 220В->6В, который, судя по искре, выдавал на выходе больше киловольта, из-за чего постоянно вылетали диоды (конденсаторы оказались более живучими, но изредка помирали и они).
Искра на выходе была около 5 мм, легко пробивала бумагу и звучала как выстрел из пистолета с пистонками (думаю, у многих в детстве такой был. ).
Чтобы добиться более впечатляющих результатов, нужно было наращивать число ступеней, что, при такой конструкции, мне совершенно не хотелось делать — колбаса из конденсаторов и так была слишком большой. В общем, поразвлекавшись с пробиванием бумажек, я забросил свой умножитель.
Но спустя пару лет увидел в магазине smd.ru просто потрясающие, на мой взгляд, конденсаторы. Тем, кто работает с такими каждый день, как мой друг Aregus, они, конечно, были не в новинку. Но для меня SMD-конденсатор, рассчитанный на 1000В и 0.1 мкФ, после здоровенных 400В кондеров из моего старого умножителя показались просто чудом. Поэтому я не сдержался и развел небольшую плату умножителя.
Если посмотреть видео на youtube по запросу Cockcroft–Walton generator, можно найти, конечно, куда более зрелищные результаты с многокиловольтным выходом. Однако все они собраны на здоровенных кондерах для монтажа в отверстия и, чаще всего, точно так же висят в воздухе, как мой первый генератор. Я разводил свою плату так, чтобы она была:
1) маленьких размеров
2) полностью SMD
3) легко масштабируемой.
В итоге получилась плата размером 35х45 мм, с креплениями по углам под стандартную стойку. На плате расположено 10 ступеней, максимальное входное напряжение — до 500В. Плата выдерживает и больше, но тогда периодчески умирают диоды. Если брать напряжение пробоя воздуха в 30 КВ/см, то максимум, что она выдавала — несколько разрядов в 10-15 КВ, после чего выбивало один из диодов. При работе в номинальном режиме такого, разумеется не происходит — ее можно запитать, например, от 220В, получив на выходе около 3111В без ущерба для ее компонентов. И, самое главное — можно легко сделать десяток таких плат, составить из них башню, пользуясь стойками, и получить умножитель в 100 раз.
Рассмотрим схемотехнику платы.
Железо
Схемотехнически плата очень простая.
Это типовая схема генератора Кокрофта-Уолтона, умножителя напряжения, которая хорошо описана в википедии.
Также там описан механизм его работы:
Благодаря диодам, конденсаторы по очереди заряжаются до удвоенного напряжения питания, соответственно на выходе имеем напряжение, возросшее в N раз, где N — количество конденсаторов в цепи. Разумеется, конденсаторы следует подбирать так, чтобы они выдерживали это самое удвоенное напряжение, поэтому, т.к. конденсаторы в схеме рассчитаны на 1000В, максимум что можно подать на них не боясь отказа — 500В. Для ровного счета я взял 10 ступеней.
Далее я развел плату:
Верхняя сторона
нижняя сторона
Можно было, в принципе, уменьшить размеры еще сильнее, но я решил не мельчить, чтобы ненароком не пробило где не надо.
Дорожки специально делал потолще, т.к. недостатка в площади в силу предыдущего пункта не испытывал. В общем, плату легко изготовить ЛУТом или фоторезистивным методом в домашних условиях.
Но т.к. мне все равно нужно было заказывать несколько плат по работе, я разместил на той же заготовке три модуля умножителя, благо они почти не занимали места.
Результаты
В результате с производства мне приехала вот такая замечательная плата:
В уже упомянутом магазине я закупил 10 конденсаторов и 10 диодов (на самом деле несколько больше, с запасом, и не зря — я все-таки не удержался и запитал умножитель от своего инвертора, напряжение на выходе которого явно выше того, на которое рассчитаны конденсаторы и диоды, в результате чего мне выбило входной диод через три-четыре разряда).
После сборки получаем вот такой модуль:
Он же в окружении моего старенького инвертора изображен на самой первой фотографии статьи.
Я долго не решался подключить его к 220 вольтам — видимо, сказывалось то, что я цифровик и ни разу не высоковольтник.
Очень не хотелось застрелиться из генератора, который сам собрал, в день своего двадцатипятилетия. Но в итоге я все-таки пересилил себя и запитал модуль от розетки, включив последовательно с чайником, который выступал в роли токоограничительного сопротивления — при мощности чайника в 1 КВт максимальный ток, который бы потек, в случае КЗ в схеме был бы не более 4.5А.
К счастью, схема заработала с первого раза в силу своей простоты.
Ниже привожу видео работы. К сожалению, моя камера не может запечатлеть нормально недлинные, но яркие разряды и нормально захвать сопутствующий звук. Зато, если смотреть в HD, хорошо видно как разряды насквозь пробивают бумажку.
Для тех, кто не хочет ради этого смотреть видео в HD — фото пробитой бумажки (пробито много раз в верхнем правом углу):
Кстати, на видео, наверное, незаметно, но в живую ясно видно, что когда между электродами вставлена бумажка, искра приобретает красноватый оттенок — видимо, из-за прогорающего вещества.
В целом конденсаторы и диоды обошлись мне рублей в 200-300 (по 15 штук и тех и тех), сейчас уже не помню точно, а на сайте цену не пишут.
Производство платы мне обошлось в 2600 рублей в московском Резоните. Но следует помнить, что, во-первых, в заказе было шесть плат, только три из которых — платы умножителя. Суммарный размер заготовки был около 100х200 мм.
А во-вторых, из этих 2600 рублей 1800 стоила подготовка к производству и 350 — доставка, так что сами платы вышли очень даже дешево. Думаю, найдется множество несогласных, но при такой цене на платы, у меня просто рука не поднимается возиться с их изготовлением дома — теперь я предпочитаю отработать по максимуму на макетках, накопить несколько различных плат, после чего заказать их все разом.
В дальнейших планах дозаказать-таки десяток таких плат и собрать башню на 30+ киловольт.
На этом у меня все, берегите себя и осторожнее с высоким напряжением.
Источник