- Балансир для li-ion аккумуляторов своими руками. Схема и описание
- Простой балансир для li-ion аккумуляторов
- Как на транзисторах сделать блок балансировки на любое количество литий-ионных аккумуляторов
- Понадобится
- Схема и работа контроллера BMS на примере одной ячейки
- Схема на 3 элемента
- Изготовление BMS платы
- Настройка BMS платы
- Схема зарядки
- Смотрите видео
- Активный балансир для LiFePO4 своими руками
- Принцип работы
- Виды балансировочных систем
- Балансир для LiFePO4 своими руками
- Зарядка своими руками (Балансир) для литиевых аккумуляторов.
Балансир для li-ion аккумуляторов своими руками. Схема и описание
Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.
Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.
Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.
Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.
С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.
Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.
Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.
Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.
Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.
Простой балансир для li-ion аккумуляторов
Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.
Источник
Как на транзисторах сделать блок балансировки на любое количество литий-ионных аккумуляторов
Литий-ионные аккумуляторы крайне чувствительны к перезарядке. И стоит только немного перезарядить батарею, как она тут же выходит из строя. Чтобы аккумуляторы равномерно заряжались в последовательной цепи, применяют схемы балансовой защиты, исключающие перезарядку.
Собрать такой контроллер самому на транзисторах довольно не сложно.
Понадобится
Схема и работа контроллера BMS на примере одной ячейки
Схема подключается паралельно аккумулятору и контролирует напряжение на нем. При достижения, во время зарядки, напряжения выше 4,2 В блокирует дальнейшее повышение.
В основе стоит микросхема регулируемого стабилизатора TL431. Которая управляет ключом на транзисторе. Транзистор через цепочку диодов блокирует превышение напряжения путем открывания и пропускания лишнего тока через себя. Светодиод служит для индикации и при загорании свидетельствует о полной зарядке батареи.
Если использовать данную схему для каждого элемента, то заряжать их можно последовательно в неограниченном количестве, без перезарядки
Схема на 3 элемента
Пример использования батареи из трех АКБ. Паралельно каждому аккумулятору подключен свой контроллер. В результате чего при отклонении параметров и неравномерной зарядке в последовательном соединении, контроллеры не дадут ни одному элементы выйти из строя.
Изготовление BMS платы
Если планируется использовать 3 батареи в одной цепи, то все контроллеры для каждого АКБ можно собрать на одной плате.
Изготавливаем плату и готовим все элементы.
Устанавливаем все детали и припаиваем. Вывода откусываем.
Настройка BMS платы
Перед подключением аккумуляторов в схему каждый контроллер необходимо отрегулировать.
Устанавливаем на блоке питания напряжение 4,2 В и подключаемся к первому контроллеру.
Вращением переменного резистора добиваемся начального свечения светодиодов.
Далее подобным образом настраиваем два последующих контроллера.
Припаиваем провода к плате и подключаем к каждому АКБ.
Схема зарядки
Данные контроллеры отслеживают превышение напряжения, но для регулировки тока зарядки нужно собрать еще небольшую схему из двух стабилизаторов, контролирующих ток и напряжение.
Заряжать линейку из трех АКБ будем от блока питания ноутбука 19 В. Первый стабилизатор на LM317 ограничивает напряжение до 14 В, второй ограничивает ток до 600 мА.
В принципе под все задачи можно было бы использовать одну микросхему LM317, но в данном примере мощности бы ее не хватило, поэтому разбивка была на две микросхемы.
Подключаем схему и производим зарядку АКБ.
Свечение всех светодиодов указывает на завершение зарядки и полном заряде всех элементов.
Вот такая несложная схема поможет быстро и сразу зарядить множество литий-ионных аккумуляторов.
Смотрите видео
Источник
Активный балансир для LiFePO4 своими руками
Статья обновлена: 2020-12-17
Для получения заданного выходного напряжения литиевые аккумуляторы последовательно соединяются в батарею. Например, для получения батареи вольтажом 24 В последовательно соединяется 7 или 8 LiFePO4 аккумуляторов, а для получения вольтажа 36 В – 10–12 элементов. При зарядке аккумуляторной сборки от общего источника питания с напряжением, соответствующим вольтажу АКБ, нужно обеспечить равномерный уровень заряда всех элементов. При этом важно, чтобы напряжение на каждом элементе не превысило допустимого значения.
Но элементы питания в сборке не идентичны, и достигают предельно допустимого напряжения в разное время. С другой стороны, когда хотя бы на одном аккумуляторе напряжение достигнет допустимого максимума, процесс зарядки необходимо прекратить. Но в таком случае остальные ячейки остаются недозаряженными, и при дальнейшем использовании они разряжаются быстрее.
Такой дисбаланс между ячейками приводит к снижению емкости всей батареи, сокращению времени ее автономной работы и преждевременному выходу из строя «слабых звеньев» – аккумуляторов, которые постоянно оказывались недозаряженными. Для решения этой проблемы используются балансиры. Они выравнивают напряжение на всех аккумах сборки и не позволяют ему превысить пороговое значение. Балансиры могут использоваться как самостоятельно, так и в составе многофункциональных BMS плат или совместно с ними.
Принцип работы
Балансирующие системы отслеживают напряжение на последовательно соединенных аккумах, а когда оно достигает граничной величины – включают силовой ключ. Тогда в работу включается балластный резистор. Прирост напряжения на подзаряжаемой ячейке останавливается, когда остаточный ток заряда становится соизмеримым току, идущему через резистор. Остальные элементы, еще не набравшие заряд, в это время продолжают заряжаться.
Процесс зарядки аккумуляторной сборки завершается после срабатывания всех балансиров. В итоге вольтаж всех элементов сборки становится равным заданной предельной величине. В зависимости от используемой схемы, балансиры для LiFePO4 аккумуляторов имеют ток срабатывания 3,52–3,55 В. Номинально вольтаж LFP ячеек составляет 3,2–3,3 В. В заряженном состоянии для них характерно напряжение 3,6 В, а в разряженном –2 В.
Виды балансировочных систем
По принципу действия различают балансиры 2 типов:
- Активные – выравнивающие напряжение на элементах в ходе подзарядки батареи. Когда 1-й элемент из аккумуляторной сборки достигает граничного напряжения, активная система баланса останавливает его питание, и заряжается 2-й элемент. Производители используют разные схемы балансиров для LiFePO4 элементов, в т. ч. емкостные и трансформаторные. Все они умеют распределять энергию от ячеек с большим уровнем заряда к менее заряженным. При заряде это делается выборочным снижением и повышением зарядного тока в зависимости от состояния элементов. При разряде аналогичным образом перераспределяются разрядные токи.
- Пассивные – используют аналоговые компоненты и не зависят от внешнего питания. Они подзаряжают аккумуляторы до нужного значения напряжения (одинакового с остальными ячейками) малыми токами и применяют резисторы. При замыкании аккумулятора шунтирующим резистором зарядный ток отчасти следует через аккум, а отчасти – через шунт. Соответственно, интенсивность зарядного процесса в отношении шунтированного аккумулятора уменьшается, и прирост напряжения на нем замедляется. КПД таких систем ниже из-за потерь энергии в виде тепла и невозможности использования всей емкости АКБ.
Балансир для LiFePO4 своими руками
Для самостоятельной сборки простого балансира для LFP ячеек можно воспользоваться распространенной схемой, которая приведена на фото. Но чтобы полноценно использовать регулируемый стабилитрон TL431, его нужно преобразовать в триггер Шмитта. В итоге получится точный и термически стабильный балансир, четко подающий управляющий импульс на силовой ключ.
Для превращения стабилитрона TL431 в триггер Шмитта достаточно включить в схему резистор R5 и p-n-p транзистор Т1. Принцип работы схемы таков: делителем R3, R4 настраивается порог отслеживаемого напряжения. При помощи делителя R3, R4 схему можно перенастроить для контроля любого другого напряжения. Значение предельного тока балансировки задает резистор R7 и напряжение на аккумуляторной секции.
Когда на управляющем электроде напряжение составит 2,5 В, произойдет открытие стабилитрона TL431 и транзистора Т1. Потенциал коллектора возрастет, и частично это напряжение пойдет в цепь через резистор R5. Произойдет лавинное вхождение TL431 в состояние насыщения. В этот момент наблюдается гистерезис – система включается при 3,6 В и выключается при 3,55 В. В затворе силового ключа создается управляющий импульс.
Такой балансир создается в виде самостоятельной платы, подключаемой к балансировочному разъему при зарядке. В современных BMS платах защита элементов питания от перенапряжения и разбалансировки по уровню заряда – это одна из функций защиты, и она выполняется микроконтроллером. Но оптимальным решением считается использование активного балансира в сочетании с BMS платой.
;Источник
Зарядка своими руками (Балансир) для литиевых аккумуляторов.
Скорей всего я бы не стал писать эту статью, если бы не одно обстоятельство. Несколько дней назад удалось придумать, как сделать очень хороший балансир на микросхеме TL431. Те, кто понимают, о чём речь, наверняка скажут – эка невидаль, да этих балансиров на TL431 – пруд пруди. Не спорю – эти микросхемы для этих целей используются очень давно. Но, из-за свойственных им недостатков, целесообразность их применения всегда вызывала много вопросов. Нет ни малейшего желания приводить примеры уже существующих схем этих балансиров, и подробно рассматривать их недостатки. Наверное, будет лучше, если я уделю больше времени, тому, что удалось сделать мне. Не покидают опасения, что что-то подобное уже было сделано до меня. Но проводить глобальные исследования, нет, ни желания, ни времени, и если вдруг выяснится, что подобный балансир уже существует, то мне останется, лишь попросить прощения за свою неосведомлённость.
Прежде, чем описывать собственно балансир, необходимо вкратце пояснить его назначение.
Суть вот в чём – литиевые аккумуляторы, чаще всего, используются в виде последовательного соединённых отдельных секций. Это необходимо, чтобы получить необходимое выходное напряжение. Количество составляющих аккумулятор секций, колеблется в очень широких пределах – от нескольких единиц, до нескольких десятков. Есть два основных способа зарядки таких аккумуляторов. Последовательный способ, когда зарядка осуществляется от одного источника питания, с напряжением, равным полному напряжению аккумулятора. И параллельный способ, когда осуществляется независимая зарядка каждой секции от специального зарядного устройства, состоящего из большого количества гальванически не связанных друг с другом источников напряжения, и индивидуальных, для каждой секции, устройств контроля.
Наибольшее распространение, ввиду большей простоты, получил последовательный способ зарядки. Балансир, о котором идёт речь в статье, не используется в параллельных системах зарядки, поэтому параллельные системы зарядки в рамках данной статьи рассматриваться не будут.
При последовательном способе зарядки, одно из главных требований, которое необходимо обеспечить, следующее – напряжение ни на одной секции заряжаемого литиевого аккумулятора, при зарядке, не должно превысить определённой величины (величина этого порога зависит от типа литиевого элемента). Обеспечить выполнение этого требования, при последовательной зарядке, не приняв специальных мер, невозможно…Причина очевидна – отдельные секции аккумулятора не идентичны, поэтому достижение максимально допустимого напряжения на каждой из секций при зарядке, происходит в разное время. Складывается ситуация, когда мы обязаны зарядку прекратить, так как напряжение на части секций уже достигло максимально допустимого порога. В то же время, часть секций остаются недозаряженными. Это плохо главным образом потому, что в итоге снижается общая ёмкость аккумулятора, так нам придётся прекратить разряд аккумулятора в тот момент, когда напряжение на самой «слабой» (недозаряженной) секции, достигнет своего минимально допустимого порога.
Чтобы не допустить повышение напряжения при зарядке, выше определённого порога, и служит балансир . Его задача достаточно проста – следить за напряжением на отдельной секции, и, как только напряжение на ней при зарядке достигнет определенной величины, дать команду на включение силового ключа, который подключит параллельно заряжаемой секции балластный резистор. При этом, если остаточный ток зарядки (а он, ближе к концу зарядки, уже достаточно мал, из-за малой разницы потенциалов между напряжением на заряжаемом аккумуляторе и напряжением на выходе зарядного устройства) будет меньше (или равен) тока протекающего через балластный резистор, то повышение напряжения на заряжаемой секции – прекратиться. При этом зарядка остальных секций, напряжение на которых ещё не достигло максимально допустимых значений – продолжиться. Закончится процесс заряда тем, что сработают балансиры всех секций аккумулятора. Напряжение на всех секциях будет одинаковым, и равным тому порогу, на которые настроены балансиры. Ток зарядки будет равен нулю , так как напряжение на аккумуляторе и напряжение на выходе зарядного устройства будут равны (нет разности потенциалов – нет тока зарядки). Будет протекать лишь ток через балластные резисторы. Его величина определяется величиной последовательно соединённых балластных резисторов и напряжением на выходе зарядного устройства.
Саму функцию контроля напряжения, легко смог бы выполнить любой компаратор, снабжённый опорным напряжением…Но компаратора у нас нет (точнее – он есть, но использовать его нам не удобно и не выгодно). У нас есть TL431. Но компаратор из неё, честно сказать – никакой. Сравнивать напряжение с опорным она умеет очень хорошо, но вот выдать чёткую, однозначную команду на силовой ключ, она не может. Вместо этого, при подходе к порогу, она плавно начинает загонять силовой ключ в активный (полуоткрытый) режим, ключ начинает сильно греться, и, в итоге, мы имеем не балансир, а полное дерьмо.
Вот именно эту проблему, которая не позволяла полноценно использовать TL431, удалось решить на днях. Ларчик просто открывался (но открывать его пришлось более двух лет) – надо было превратить TL431, в триггер Шмитта. Что и было сделано. Получился идеальный балансир — точный, термостабильный, достаточно простой, с чёткой командой на силовой ключ.
Ниже — две принципиальные схемы балансиров, рассчитанные для контроля порогов LiFePO4 и Li-ion аккумуляторов.
Источник