Зарядка для литий полимерных аккумуляторов своими руками

Зарядное устройство для литий-полимерных аккумуляторов

На микросхеме MAX1555

Литий-полимерные аккумуляторы (LiPo) — требуют постоянного контроля. Для этого используется микросхема MAX1555 (см. даташит) и др. подобные. Я разработал зарядное устройство в Eagle, но не сделал его (студент — нет денег). Все компоненты использованы в корпусах для поверхностного монтажа, но припаять их довольно легко даже простым паяльником.
Вот схема зарядного устройства и простая модель готового устройства.

На микросхеме MCP73831

Мне не нравится цена и доступность микросхемы MAX1555 от фирмы Maxim. В поисках чего-то лучшего, я наткнулся на MCP73831 (см. даташит) от Microchip. Эта микросхема подешевле, чем MAX1555.

Я сделал несколько изменений в предыдущей печатной плате.

Я решил использовать только элементы для поверхностного монтажа, поэтому была использована микросхема в корпусе SOT-23. Такие элементы не очень сложно паять, даже очень мелкие резисторы 0805. Плата была разработана в Eagle и сделана на заводе. Я получил три платы, но сделал только два зарядных устройства, потому что у меня было только две микросхемы.
Плата специально сделана небольшой и имеет светодиодный индикатор. Это простое небольшое устройство прекрасно справляется со своими обязанностями.

Источник

Зарядное устройство литиевых аккумуляторов своими руками

Проблема автономного питания электронной аппаратуры встала перед человечеством особенно остро при появлении обилия полупроводниковых элементов. Вместе с развитием электроники появлялись новые виды батареек и аккумуляторов, всё это привело к тому, что сейчас ёмкие литий-ионные аккумуляторы стали использоваться практически повсеместно в портативной электронике. Они обладают по-истине впечатляющими ёмкостями при небольших габаритах, могут выдавать большие токи в нагрузку, а потому находят применение практически везде — хоть в небольших беспроводных наушниках, хоть в автомобильной бортовой сети, где требуются высокие токи и большая ёмкость. К особенностям литий-ионных аккумуляторов также можно отнести их «привередливость» к зарядке — просто так взять и подключить такой аккумулятор к источнику питания, чтобы он сам заряжался не получится. Ток заряда должен быть строго нормирован, а его превышение может грозить аккумулятору выходом из строя. Ток заряда обычного литий-ионного аккумулятора должен быть равен примерно одной-двумя десятым от его ёмкости. Например, аккумулятор ёмкость 1000 мА/ч должен заряжаться током 100-200 мА, это обеспечит наиболее долгий срок его службы. Для того, чтобы контролировать ток заряда, нужна специальная схема, которая будет подключаться входом к источнику питания, а выходом — к заряжаемому аккумулятору. Такую схему достаточно просто собрать самому, он представлена ниже.

В левой части схемы на транзисторе Q1 организован индикатор, который сообщает, зарядился аккумулятор, или ещё нет. Последовательно с питанием схемы стоит резистор R1, через который протекает ток заряда аккумулятора, соответственно, на резисторе падает часть напряжения. Если ток заряда ещё достаточно большой, аккумулятор заряжается, падение напряжение на этом резисторе приоткрывает транзистор Q1, светодиод D1 светится. Как только аккумулятор зарядится до нужного напряжение, ток упадёт до минимальных значений, транзистор Q1 закроется и D1 перестанет светится — зарядка завершена. Время заряда будет напрямую зависеть от тока заряда, например, аккумулятор ёмкостью 1000 мА/ч будет заряжаться током 100 мА около 10 часов, а вот током 200 мА уже 5 часов — в два раза меньше при соответствующем увеличении тока заряда в два раза. Конденсатор С1 на схеме — сглаживающий по питанию, сюда не лишним будет установить параллельно электролитический на 47-100 мкФ и параллельно ему керамический на 100 нФ. После этого питающее напряжение поступает на микросхему-стабилизатор LM317, в цепи регулировки которой стоит уже другая микросхема — TL431. Обе эти микросхемы являются распространёнными, достать их можно в любом магазине радиодеталей, а TL431 встречается даже во многих импульсных сетевых блоках питания. Принцип работы данной хитрой схемы достаточно прост. Сперва аккумулятор заряжается постоянным током, около 100 мА, этот ток задаётся резистором R5 — микросхема TL317 работает в роли стабилизатора тока. Затем, когда аккумулятор уже почти зарядится и его напряжение станет близким к 4,2В, схема начинает работать в роли стабилизатора напряжения, дозаряжая аккумулятор небольшим током. Такой алгоритм заряда наиболее правильный и позволит сохранить ёмкость аккумулятора на долгие года, даже при частых циклах зарядка-разрядка. На схеме также виден подстроечный резистор RV1, который служит для настройки выходного напряжения. После сборки схемы его нужно будет настроить всего один раз, для выставления на выходе схемы напряжения 4,2В без подключенного аккумулятора. Можно установить выходное напряжение на уровне 4,1В, в этом случае схема зарядки будет слегка недозаряжать аккумуляторы, при этом 0,1 вольта не сильно скажется на ёмкости аккумулятора, но позволит значительно продлить ему жизнь. Рассмотрим более подробно, какие компоненты нужно применит для сборки данной схемы.

Читайте также:  Как сделать коробку для букета своими руками

Микросхемы LM317 и TL431. Первая обязательно должна быть в корпусе ТО-220, так как в процессе работы зарядного устройства она будет значительно нагреваться. На её нагрев, в значительно степени будет влиять ток заряда и напряжение, поступающее на вход схемы. Чем больше напряжение на входе, и чем больше ток — те сильнее будет нагреваться микросхема. Её необходимо установить на радиатор с применением теплопроводной пасты, температура радиаторе при долговременной работе не должна превышать 50-60°C, это хорошо скажется на надёжности зарядного устройства. TL431 можно взять в обычном миниатюрном корпуса ТО-92, она нагреваться не будет. Цоколёвки и вид корпусов микросхем представлен на картинке выше.

Светодиоды — здесь всё просто. Можно применить любые светодиоды на 3В, какой угодно формы и цвета. Наиболее логично будет установить D1 красного цвета, а D2 — зелёного, горение зелёного светодиода будет означать, что схема работает и на её выходе присутствует напряжение. Яркость горения светодиодов задаётся резисторами на схеме, включенными последовательно со светодиодами. Все светодиоды имеют два вывода — анод и катод, соответственно это плюс и минус. Как правило, длинная ножка светодиода — плюс, а короткая — минус, важно не перепутать цоколёвку, иначе светодиоды на будут светится.

Несколько слов про резисторы. Они все могут иметь мощность 0,25Вт, кроме двух R1 и R4, эти резисторы будут стоять в цепи питания, а потому через них будет протекать ток заряда, соответственно, будет рассеиваться мощность. Для них нужно взять резисторы мощностью 1-2Вт, этого будет достаточно для рассеивания лишнего тепла. Важно соблюдать номиналы всех резисторов, от них будут зависеть параметры работы схемы.

Ещё один важный элемент схемы — подстроечный резистор RV1, с помощью которого устанавливается напряжение на выходе. Здесь нужно применить многооборотный резистор, например такой, какой показан на картинке выше — его легко отличить на наличию наверху небольшого желтого винта под отвёртку, он должен быть рассчитан на сопротивление 22 кОм. Многооборотный резистор позволяет очень точно установить напряжение на выходе, вплоть до сотых долей вольта. Несколько слов про процедуру настройки. Сперва схему нужно включить «вхолостую», без аккумулятора, подключив на его место вольтметр. Затем, глядя на показания вольтметра вращать переменный резистор в ту или иную сторону для уменьшения или увеличения напряжение на выходе, установив там 4,1-4,2В. На этом процедура настройки схема будет закончена, можно подключать аккумулятор для зарядки.

Изготавливается схема зарядного на компактной печатной плате, которую затем можно поместить в подходящий корпус. При этом корпус зарядного будет включать в себя контакты либо разъём для питания (7-20В) и провода-крокодилы для подключения заряжаемого аккумулятора. Печатная плата прилагается в конце статьи в архиве, открыть её можно с помощью программ Sprint-Layout либо Proteus.

На картинке ниже показана фотография готовой платы. Обратите внимание, что микросхема LM317 впаивается прямо на плату, а потом вместе с платой крепится на радиатор. Светодиоды можно установить как прямо на плату, так и вывести на проводах на панель корпуса. Таким образом, получилось отличное самодельное зарядное устройство для литий-ионных аккумуляторов, в отличие от своим заводских аналогов, данная схема позволяет вручную настраивать ток заряда, а также напряжение, до которого будут заряжаться аккумуляторы. Стоит обратить внимание, что аккумуляторы очень чувствительны к перезаряду, а потому не стоит подключать в выходу схемы аккумулятор, предварительно на настроив порог подстроечным резистором. Удачной сборки!

Источник

Зарядка литиевых аккумуляторов китайскими модулями

Литиевые аккумуляторы, характеристики, особенности

Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео

Читайте также:  Как сделать декоративную штукатурку фасада своими руками

Последовательно или параллельно?

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Промежуточным вариантом является переключение аккумуляторов из последовательного соединения в параллельное (для зарядки), что подробно рассмотрено в видеоролике ниже, а все схемы и ссылки на переключатели вы найдёте вот здесь https://alexgyver.ru/18650/

Особенности зарядки китайскими модулями

Стандартный покупной зарядно-защитный модуль за 20 рублей для литиевого аккумулятора (ссылка на aliexpress) позиционируется продавцом как модуль для одной банки 18650. Может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер, это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.

Читайте также:  Деревянные окна реставрация своими руками

Важно! Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).

Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов? МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.

Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.

Важно! Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль, на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.

Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.

ПАРАЛЛЕЛЬНОЕ соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.

ПОСЛЕДОВАТЕЛЬНОЕ соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.

Важно! Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.

Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока. Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Источник

Оцените статью