Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь
На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.
Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.
Всё описанное ниже справедливо и для светильников и для ламп.
Содержание статьи
Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер
В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:
1. Отсутствие стабилизации по напряжению или току.
2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.
Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.
Схема светодиодной лампы с гасящим конденсатором:
А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:
Импульсные драйвера для светодиодов
В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.
Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.
Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:
1. Бестрансформаторный, соответственно без гальванической развязки.
2. Трансформаторный – с гальванической развязкой.
Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.
Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.
Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.
Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.
В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.
Во втором – выгорит предохранитель или дорожка печатной платы.
Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.
Защита светодиодных ламп: схемы и способы
Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:
1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.
2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.
3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.
Варистор для защиты ламп и другой бытовой техники
Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.
Внешний вид варисторов
Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;
Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);
Um= — максимально допустимое постоянное напряжение;
Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.
Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.
Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.
Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.
Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.
Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.
Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.
Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.
Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.
Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.
В этом видео ролике автор интересно рассказывает о таком способе защиты.
Готовые решения
Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.
На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.
Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.
Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.
Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).
Внутри расположено три детали, одну из которых мы рассмотрели выше:
Вот принципиальная схема. Вы можете её повторить.
Заключение
Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.
Источник
—>ЗАМЕТКИ ДЛЯ МАСТЕРА —>
Защита лампы накаливания при включении
Предлагаемое простое устройство (рис.1), лишено многих недостатков перед подобными схемами и обеспечивает плавное зажигание бытовой лампы накаливания.
Подбирая соответствующие емкости и диоды, можно здесь подключить лампочку практически любой мощности и любого напряжения без понижающего трансформатора. Например, для сети 220В и 60 – ваттной лампы с теми же полупроводниковыми вентилями нужны конденсаторы, соответственно, по 5 мкФ.
Ограничитель броска тока при включении лампы
Устройство, собранное по схеме на рис.2, задерживает подачу на лампу полного напряжения сети приблизительно на 0,2 секунды – продолжительность зарядки установленного в нем конденсатора.
Этого вполне достаточно для эффективного ограничения броска тока через холодную спираль лампы. Остаточное падение напряжения на огарничителе – около 5 В.
Первоначально в ограничителе применялись резисторы МЛТ – 0,5, транзистор КТ940А, диода КД105Б, симистора КУ208Г. В дальнейшем в схеме использовались малогабаритные детали, типы которых указаны на схеме, и резисторы меньшей мощности. Такой вариант ограничителя можно смонтировать на печатной плате изображенной на рис.2.
При мощности лампы EL 1 более 100 Вт симистор МАС97 необходимо заменить на более мощным ВТ137 или ВТА12-600. Если такой тиристор снабдить теплоотводом, а вместо транзистора MJE 13001 установить MJE 13003, допустимая мощность нагрузки достигнет 2 кВт. Емкость конденсатора С1 можно увеличить до 470 мкФ.
Двухступенчатое включение лампы
Резкое включение лампы накаливания при помощи обычного выключателя вредно как для глаз (резкий скачок света), так и для самой лампы, разрушающее воздействуя на ее нить накала.
Схема показанная на рисунке 3 обеспечивает двухступенчатое включение лампы. При включении S 1, первые 1-2 секунды лампа HL 1 горит в пол накала, потому что через нее протекает ток только одной полуволны сетевого напряжения (через VD 1). Одновременно, начинает заряжаться С1 через VD 2 и R 2, и, примерно, через 1-2 секунды напряжение на нем достигает порога открывания тиристора VS 1, что и происходит. Через тиристор начинает на лампу поступать и вторая полуволна сетевого напряжения, — лампа зажигается в полный накал.
Чтобы лампа стала «вечной»
Известно, что осветительная лампа чаще всего выходит из строя в момент зажигания. Именно в этот момент сопротивление нити лампы мало (примерно в 10 раз меньше раскаленной), и на ней рассеивается мощность, значительно превышающая номинальную. Нить не выдерживает и перегорает. Особенно часто такое случается с лампами до 500 Вт.
Чтобы продлить срок службы лампы, нужно сначала подать на нее пониженное напряжение и немного разогреть нить лампы, а через некоторое время довести напряжение до номинального. Для этой цели используют автомат двухступенчатой подачи напряжения, который включают последовательно с сетевым выключателем, не нарушая остальной проводки. В квартирах и рабочих помещениях автомат может быть вмонтирован в той же коробке, что и выключатель.
Схема автомата приведена на рис.4.
При налаживании автомата, сначала отключают от деталей анод тиристора VS 1. Подбором резистора R 3 (вместо него удобно временно установить переменный резистор сопротивлением 15 кОм) добиваются на лампе напряжения примерно 200В (точнее всего измерения можно провести прибором тепловой системы) – несколько пониженное по сравнению с сетевым напряжение питания которое продлевает срок службы лампы. Затем измеряют сопротивление введенной части переменного резистора и впаивают в устройство постоянный резистор такого же или ближайшего номинала.
Далее подключают тиристор VS 1 и подбором резистора R 1 добиваются, чтобы тиристор VS 1 открывался раньше VS 2. Это нетрудно определить по зажиганию лампы – сначала она должна гореть «вполнакала». Если автомат работает неустойчиво (лампа мигает), значит установлен очень «чувствительный» тиристор VS 1 (включается при малом токе через управляющий электрод). В этом случае между управляющим электродом и катодом тиристора нужно включить резистор 1…2 кОм либо заменить тиристор.
В схеме можно использовать тиристор VS 1 — любой серии КУ201, КУ202, VS 2 – КУ202К, КУ202Н. Диоды серии КД105Б. С этими деталями автомат способен управлять лампой мощностью до 60 Вт. Если же заменить диоды более мощными, например Д247, и установить их и тиристор VS 2 на радиаторы, автомат можно использовать с лампами мощностью до 1 кВт.
Источник